K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

1 b = 3 

 2 3x2 + 2x + [-1]

28 tháng 4 2016

giai 

1 ] y = 1 la nghiệm

-3 x 1 + b = 0 

suy ra b = 3                                                                                         2 ] h[x] = f[x] + G[x] = [ 2x2 + x - 5 ] + [ x2 + 2x + 4 ]

      h[x] = f[x] + G[x] = 2x2 + x - 5 + x2 + 2x + 4

       h[x] = f[x] + G[x] = [ 2x+ x2 ] + [ x + 2x ]  + [ -5 + 4 ]

      h[x] = f[x] + G[x]  =      3x2  +   3x      + [-1]                                                                                                                                                               tu do suy ra h[x] = 3x2  + 2x  + [ -1 ]                                                                                                                                            

6 tháng 7 2021

a. f(x) = g(x) - h(x)

= 4x2 + 3x + 1 - (3x2 - 2x - 3)

= 4x2 + 3x + 1 - 3x2 + 2x + 3

= (4x2 - 3x2) + (3x + 2x) + (1 + 3)

= x2 + 5x + 4

b. Xét đa thức f(x) = x2 + 5x + 4

f(-4) = (-4)2 + 5 . (-4) + 4 = 0

Vậy x = -4 là nghiệm của f(x)

c. Cho f(x) = 0

\(\Rightarrow\) x2 + 5x + 4 = 0

\(\Rightarrow\) x2 + x + 4x + 4 = 0

\(\Rightarrow\) x (x + 1) + 4 (x + 1) = 0

\(\Rightarrow\) (x + 1) (x + 4) = 0

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)

Vậy f(x) có tập nghiệm là \(x\in\left\{-4;-1\right\}\).

6 tháng 7 2021

f(x)=x^2+5x+4 (x+1)(x+4)=0 \(\hept{\begin{cases}x=-1\\x=-4\end{cases}}\) s={-1,-4}

a) Đặt \(f_{\left(x\right)}=0\)

\(\Leftrightarrow x^3+3x^2-2x-2=0\)

\(\Leftrightarrow x^3-x^2+4x^2-4x+2x-2=0\)

\(\Leftrightarrow x^2\left(x-1\right)+4x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+4x+4-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+2\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x+2=\sqrt{2}\\x+2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{2}-2\\x=-\sqrt{2}-2\end{matrix}\right.\)

Vậy: \(S=\left\{1;\sqrt{2}-2;-\sqrt{2}-2\right\}\)

b) Đặt \(G_{\left(x\right)}=0\)

\(\Leftrightarrow3x+1=0\)

\(\Leftrightarrow3x=-1\)

hay \(x=\frac{-1}{3}\)

Vậy: \(S=\left\{-\frac{1}{3}\right\}\)

c) Đặt \(A_{\left(x\right)}=0\)

\(\Leftrightarrow2x^2-4=0\)

\(\Leftrightarrow2x^2=4\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

Vậy: \(S=\left\{\sqrt{2};-\sqrt{2}\right\}\)

d) Đặt \(h_{\left(x\right)}=0\)

\(\Leftrightarrow2x^2+3x-5=0\)

\(\Leftrightarrow2x^2+5x-2x-5=0\)

\(\Leftrightarrow x\left(2x+5\right)-\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=1\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{-5}{2};1\right\}\)

e) Đặt P=0

\(\Leftrightarrow3x^2+4x^2+6x+3=0\)

\(\Leftrightarrow7x^2+6x+3=0\)

\(\Leftrightarrow7\left(x^2+\frac{6}{7}x+\frac{3}{7}\right)=0\)

mà 7>0

nên \(x^2+\frac{6}{7}x+\frac{3}{7}=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{6}{14}+\frac{9}{49}+\frac{12}{49}=0\)

\(\Leftrightarrow\left(x+\frac{3}{7}\right)^2=-\frac{12}{49}\)(vô lý)

Vậy: S=∅

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2\cdot1^2+a\cdot1+4=2^2-5\cdot2-b\\2\cdot\left(-1\right)^2+a\cdot\left(-1\right)+4=5^2-5\cdot5-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+6=-b-6\\2-a+4=-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-12\\-a+b=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-9\end{matrix}\right.\)

8 tháng 5 2017

Giải:

a)

- Thu gọn: \( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)

\( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)

\( f(x)=(18-16)+(-x^4-2x^4)+4x+x^2\)

\(f\left(x\right)=2-3x^4+4x+x^2\)

Sắp xếp: \(4x+x^2-3x^4+2\)

- Thu gọn: \(g(x)=2+x^4+4x^2+7x-6x^4-3x\)

\(g(x)=2+x^4+4x^2+7x-6x^4-3x\)

\(g(x)=2+(x^4-6x^4)+4x^2+(7x-3x)\)

\(g\left(x\right)=2-5x^4+4x^2+4x\)

Sắp xếp: \(4x+4x^2-5x^4+2\)

b)

\(f(x)+g(x)=(4x+x^2-3x^4+2)+(4x+4x^2-5x^4+2)\)

\(=4x+x^2-3x^4+2+4x+4x^2-5x^4+2\)

\(=\left(4x+4x\right)+\left(x^2+4x^2\right)-\left(3x^4-5x^4\right)+\left(2+2\right)\)

\(=8x+5x^2-\left(-2x^4\right)+4\)

\(f(x)-g(x)=(4x+x^2-3x^4+2)-(4x+4x^2-5x^4+2)\)

\(=4x+x^2-3x^4+2-4x-4x^2+5x^4-2\)

\(=\left(4x+4x\right)+\left(x^2-4x^2\right)-\left(3x^4+5x^4\right)+\left(2-2\right)\)

\(=8x+\left(-3x^2\right)-8x^4\)

kết bạn ko

a) Để \(F_{\left(x\right)}=2mx-2\) có nghiệm là x=1 thì \(F_{\left(1\right)}=2\cdot m\cdot1-2=0\)

\(\Leftrightarrow2m-2=0\)

\(\Leftrightarrow2m=2\)

hay m=1

Vậy: Khi m=1 thì \(F_{\left(x\right)}=2mx-2\) có nghiệm là x=1

b) Để \(G_{\left(x\right)}=mx^2+2x+8\) có nghiệm là x=-1 thì \(G_{\left(-1\right)}=m\cdot\left(-1\right)^2+2\cdot\left(-1\right)+8=0\)

\(\Leftrightarrow m-2+8=0\)

\(\Leftrightarrow m+6=0\)

hay m=-6

Vậy: Khi m=-6 thì \(G_{\left(x\right)}=mx^2+2x+8\) có nghiệm là x=-1

c) Để \(H_{\left(x\right)}=x^4+3m^2x^3+2m^2+mx-1\) có nghiệm là x=1

thì \(H_{\left(1\right)}=1^4+3\cdot m^2\cdot1^3+2\cdot m^2+m\cdot1-1=0\)

\(\Leftrightarrow1+3m^2+2m^2+m-1=0\)

\(\Leftrightarrow5m^2+m=0\)

\(\Leftrightarrow m\left(5m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\5m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\5m=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\frac{-1}{5}\end{matrix}\right.\)

Vậy: Khi \(m\in\left\{0;\frac{-1}{5}\right\}\) thì \(H_{\left(x\right)}=x^4+3m^2x^3+2m^2+mx-1\) có nghiệm là x=1

12 tháng 2 2017

2) Ta có: \(\frac{x_1}{y_2}=\frac{x_2}{y_1}\Rightarrow\frac{x_1^2}{y_2^2}=\frac{x_2^2}{y_1^2}=\frac{x_1^2+x_2^2}{y_1^2+y_2^2}=\frac{2^2+3^2}{52}=\frac{1}{4}\)

\(\Rightarrow\frac{x_1^2}{y_2^2}=\frac{1}{4}\Rightarrow y_2^2=16\Rightarrow\)\(\orbr{\begin{cases}y_2=-4\\y_2=4\end{cases}\Rightarrow}\)\(\orbr{\begin{cases}y_1=-6\\y_1=6\end{cases}}\)

=> KL....

12 tháng 2 2017

I2x+3I=x+2

TH1: Nếu \(x\le-\frac{3}{2}\)(*), =>I2x+3I=-2x-3

PT: -2x-3=x+2 <=> x=\(-\frac{5}{3}\)(tm (*))

TH2: Nếu \(x>-\frac{3}{2}\)(**), => I2x+3I=2x+3

PT: 2x+3=x+2 => x=-1 (tm (**))

Vậy x=...