Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{C}+\widehat{ABC}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{ABC}=50^0\)
\(\Leftrightarrow\widehat{ABD}=25^0\)
Xét ΔABD vuông tại A có
\(AB=BD\cdot\cos\widehat{ABD}\)
\(\Leftrightarrow BD=\dfrac{21}{\cos25^0}\simeq23.2\left(cm\right)\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{3}{5}\)
nên \(\widehat{B}\simeq36^052'\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-36^052'=53^08'\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot7,5=4,5\cdot6=27\)
=>AH=27/7,5=3,6(cm)
Xét tam giác ABC vuông tại A có A B C ^ + C ^ = 90 o ⇒ A B C ^ = 50 o
Mà BD là phân giác góc ABC nên A B D ^ = 1 2 A B C ^ = 25 0
Xét tam giác ABD vuông tại A ta có B D = A B c o s A B D ^ = 21 c o s 25 o ≈ 23 , 2 c m
Đáp án cần chọn là: D
a) Áp dụng HTL :
\(\left\{{}\begin{matrix}AH^2=BH.HC\Rightarrow AH=\sqrt{1,8.3,2}=2,4\left(cm\right)\\AB^2=BH.BC\Rightarrow AB=\sqrt{1,8\left(1,8+3,2\right)}=3\left(cm\right)\\AC^2=HC.BC\Rightarrow AC=\sqrt{3,2\left(1,8+3,2\right)}=4\left(cm\right)\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\Rightarrow\widehat{B}\approx53^0\\tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\widehat{C}\approx37^0\end{matrix}\right.\)