Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 câu a) đầu tiên
\(x^2-x-56=x^2+7x-8x-8.7=x\left(x+7\right)-8\left(x+7\right)=\left(x-8\right)\left(x+7\right)\)
a) x3 - 16x = 0
x(x2 - 16) = 0
=> x = 0 hoặc x2 - 16 = 0
x = 4
Vậy x = 0 hoặc x = 4
b) x4 -2x3 + 10x2 - 20x = 0
x3 (x - 2) + 10x(x - 2) = 0
(x - 2)(x3 + 10x) = 0
=> x - 2 = 0 hoặc x3 + 10x = 0
x = 2 x(x2 + 10) = 0
+ TH1: x = 0
+ TH2: x2 + 10 = 0
x2 = -10 (vô lí)
Vậy x = 2 hoặc x = 0
c) (2x - 3)2 = (x + 5)2
(2x)2 + 2 . 2x . 3 + 32 = x2 + 2.x.5 + 52
4x2 + 12x + 9 = x2 + 10x + 25
4x2 + 12x - x2 - 10x = 25 - 9
3x2 + 2x = 16
x(3x + 2) = 16
Đến đây bạn làm nốt câu c nhé!
\(a,x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
\(b,x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow\left(x-2\right)x\left(x^2+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x=0\\x^2+10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\\left[{}\begin{matrix}x^2=10\\x^2=-10\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\x=\sqrt{10}\\x=-\sqrt{10}\end{matrix}\right.\)\(c,\left(2x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow4x^2-4x+1=x^2+6x+9\)
\(\Leftrightarrow4x^2-4x+1-x^2-6x-9=0\)
\(\Leftrightarrow3x^2-10x-8=0\)
\(\Leftrightarrow3x^2-12x+2x-8=0\)
\(\Leftrightarrow3x\left(x-4\right)+2\left(x-4\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=4\end{matrix}\right.\)
Phần d tương tự
Câu a :
\(x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-4^2\right)=0\)
\(\Leftrightarrow x\left[\left(x+4\right)\left(x-4\right)\right]=0\)
\(\Rightarrow\) \(x=0\)
\(\Rightarrow\) \(x+4=0\Rightarrow x=-4\)
\(\Rightarrow x-4=0\Rightarrow x=4\)
Câu b :
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)\) \(=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Rightarrow x=0\)
\(\left(x-2\right)=0\Rightarrow x=2\)
\(x^2+10=0\) \(\Rightarrow\) x ( loại )
b \(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
hay \(x\in\left\{0;2\right\}\)
c: \(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
=>(x-8)(3x+2)=0
=>x=8 hoặc x=-2/3
d: \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
=>x=2 hoặc x=1
e: \(\Leftrightarrow x\left(x^2-11x+30\right)=0\)
=>x(x-5)(x-6)=0
hay \(x\in\left\{0;5;6\right\}\)
b: \(\Leftrightarrow x\left(x^3-2x^2+10x-20\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
hay \(x\in\left\{0;2\right\}\)
c: \(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
=>(x-8)(3x+2)=0
hay \(x\in\left\{8;-\dfrac{2}{3}\right\}\)
d: \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
=>x=1 hoặc x=2
*\(\left(2x-3\right)^2=\left(x+5\right)^2\)
\(\Rightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Rightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
* \(x^3-16x=0\)
\(\Rightarrow x\left(x^2-16\right)=0\)
\(\Rightarrow x\left(x^2-4^2\right)=0\)
\(\Rightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Bài 3:
a) Ta có: \(x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Vậy: \(x\in\left\{0;4;-4\right\}\)
b) Ta có: \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x\left(x^3-2x^2+10x-20\right)=0\)
\(\Leftrightarrow x\left[x^2\left(x-2\right)+10\left(x-2\right)\right]=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;2\right\}\)
c) Ta có: \(\left(2x-3\right)^2=\left(x+5\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\frac{2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{8;-\frac{2}{3}\right\}\)
d) Ta có: \(x^2\left(x-1\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2\right\}\)
1, x(x - 5) - 4x + 20 = 0
=> x(x - 5) - 4(x - 5) = 0
=> (x - 4)(x - 5) = 0
=> x - 4 = 0 hoặc x - 5 = 0
=> x = 4 hoặc x = 5
=> x thuộc {4; 5}
2, 3(x + 1) + x(x + 1)
= (3 + x)(x + 1)
3, 2x3 + x = 0
=> x(2x2 + 1) = 0
=> x = 0 hoặc 2x2 + 1 = 0
=> x = 0 hoặc 2x2 = -1
=> x = 0 hoặc x2 = -1/2 (vô lí vì x2 > hoặc = 0 với mọi x)
=> x = 0
4, x3 - 16x = 0
=> x(x2 - 16) = 0
=> x = 0 hoặc x2 - 16 = 0
=> x = 0 hoặc x2 = 16
=> x = 0 hoặc x = 4 hoặc x = -4
=> x thuộc {-4; 0; 4}
5, x2 + 6x = -9
=> x2 + 6x + 9 = 0
=> x2 + 2.3.x + 32 = 0
=> (x + 3)2 = 0
=> x + 3 = 0
=> x = -3
6, x4 - 2x3 + 10x2 - 20x = 0
=> x2(x2 + 10) - 2x(x2 + 10) = 0
=> (x2 + 2x)(x2 + 10) = 0
=> x(x +2)(x2 + 10) = 0
-TH1: x = 0
-TH2: x + 2 = 0 => x = -2
-TH3: x2 + 10 = 0 => x2 = -10 (vô lí vì x2 > hoặc = 0 với mọi x)
=> x thuộc {0; -2}
7, (2x - 3)2 = (x + 5)2
-TH1: 2x - 3 = x + 5
=> x = 8
- TH2: - 2x + 3 = x + 5
=> -3x = 2
=> x = \(\frac{-2}{3}\)
- TH3: 2x - 3 = - x - 5
=> 3x = -2
=> x = \(\frac{-2}{3}\)
- TH4: - 2x + 3 = - x - 5
=> -x = -8
=> x = 8`
=> x thuộc {\(\frac{-2}{3}\); 8}
Bài 2 :
a ) \(x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-16=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)
Vậy..........
b ) \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\Rightarrow x=2\\x^2+10=0\left(loại\right)\end{matrix}\right.\)
Vậy .......................
c ) \(\left(2x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy.............
d ) \(x^2\left(x-2\right)-2x^2+8x-8=0\)
\(\Leftrightarrow x^3-2x^2-2x^2+8x-8=0\)
\(\Leftrightarrow x^3-4x^2+8x-8=0\)
\(\Leftrightarrow\) \(\left(x-2\right)^3=0\)
\(\Rightarrow x=2\)
Bài 2 :
a ) x3−16x=0x3−16x=0
⇔x(x2−16)=0⇔x(x2−16)=0
⇔[x=0x2−16=0⇒[x=0x=±4⇔[x=0x2−16=0⇒[x=0x=±4
Vậy..........
b ) x4−2x3+10x2−20x=0x4−2x3+10x2−20x=0
⇔x3(x−2)+10x(x−2)=0⇔x3(x−2)+10x(x−2)=0
⇔(x−2)(x3+10x)=0⇔(x−2)(x3+10x)=0
⇔x(x−2)(x2+10)=0⇔x(x−2)(x2+10)=0
⇔⎡⎢⎣x=0x−2=0⇒x=2x2+10=0(loại)⇔[x=0x−2=0⇒x=2x2+10=0(loại)
Vậy .......................
c ) (2x−1)2=(x+3)2(2x−1)2=(x+3)2
⇔(2x−1)2−(x+3)2=0⇔(2x−1)2−(x+3)2=0
⇔(2x−1−x−3)(2x−1+x+3)=0⇔(2x−1−x−3)(2x−1+x+3)=0
⇔(x−4)(3x+2)=0⇔(x−4)(3x+2)=0
⇔[x−4=03x+2=0⇒⎡⎣x=4x=−23⇔[x−4=03x+2=0⇒[x=4x=−23
Vậy.............
d ) x2(x−2)−2x2+8x−8=0x2(x−2)−2x2+8x−8=0
⇔x3−2x2−2x2+8x−8=0⇔x3−2x2−2x2+8x−8=0
⇔x3−4x2+8x−8=0⇔x3−4x2+8x−8=0
⇔⇔ (x−2)3=0(x−2)3=0
⇒x=2