K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2019

a) x3 - 16x = 0

x(x2 - 16) = 0

=> x = 0 hoặc x2 - 16 = 0

x = 4

Vậy x = 0 hoặc x = 4

b) x4 -2x3 + 10x2 - 20x = 0

x3 (x - 2) + 10x(x - 2) = 0

(x - 2)(x3 + 10x) = 0

=> x - 2 = 0 hoặc x3 + 10x = 0

x = 2 x(x2 + 10) = 0

+ TH1: x = 0

+ TH2: x2 + 10 = 0

x2 = -10 (vô lí)

Vậy x = 2 hoặc x = 0

c) (2x - 3)2 = (x + 5)2

(2x)2 + 2 . 2x . 3 + 32 = x2 + 2.x.5 + 52

4x2 + 12x + 9 = x2 + 10x + 25

4x2 + 12x - x2 - 10x = 25 - 9

3x2 + 2x = 16

x(3x + 2) = 16

Đến đây bạn làm nốt câu c nhé!

17 tháng 6 2018

*\(\left(2x-3\right)^2=\left(x+5\right)^2\)

\(\Rightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\Rightarrow\left(x-8\right)\left(3x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

17 tháng 6 2018

* \(x^3-16x=0\)

\(\Rightarrow x\left(x^2-16\right)=0\)

\(\Rightarrow x\left(x^2-4^2\right)=0\)

\(\Rightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

19 tháng 6 2019

\(o,x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

19 tháng 6 2019

\(n,3x^3-3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)

\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)

\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)

2 tháng 7 2018

a)  \(\left(x+6\right)^2-x\left(x+9\right)=0\)

\(\Leftrightarrow\)\(x^2+12x+36-x^2-9x=0\)

\(\Leftrightarrow\)\(3x+36=0\)

\(\Leftrightarrow\)\(x=-12\)

Vậy...

b) \(6x\left(2x+5\right)-\left(3x+4\right)\left(4x-3\right)=9\)

\(\Leftrightarrow\)\(12x^2+30x-12x^2-7x+12=9\)

\(\Leftrightarrow\)\(23x+12=9\)

\(\Leftrightarrow\)\(x=-\frac{3}{23}\)

Vậy

c) \(2x\left(8x+3\right)-\left(4x+1\right)=13\)

\(\Leftrightarrow\)\(16x^2+6x-4x-1=13\)

\(\Leftrightarrow\)\(16x^2+2x-14=0\)

\(\Leftrightarrow\)\(8x^2+x-7=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(8x-7\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=\frac{7}{8}\end{cases}}\)

Vậy

d) \(\left(x-4\right)^2-x\left(x+4\right)=0\)

\(\Leftrightarrow\)\(x^2-8x+16-x^2-4x=0\)

\(\Leftrightarrow\)\(-12x+16=0\)

\(\Leftrightarrow\)\(x=\frac{4}{3}\)

Vậy

e) \(\left(x-2\right)^2-\left(2x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x^2-4x+4-2x^2+x+6=0\)

\(\Leftrightarrow\)\(-x^2-3x+10=0\)

\(\Leftrightarrow\)\(\left(2-x\right)\left(x+5\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

Vậy

6 tháng 7 2018
https://i.imgur.com/XlB7mwa.jpg
6 tháng 7 2018
https://i.imgur.com/E2sWxLH.jpg
26 tháng 3 2017

a)x^3+5x-6=0

x^3-x+6x-6

x(x^2-1)+6(x-1)=0

(x-1)(x(x+1)+6)

(x-1)(x^2+x+6)=0

=>x-1 hoac x^2+x+6

TH1

x-1=0

x=1

TH2

x^2+x+6=0

(x^2+2.1/2 x +1/4)-1/4+6=0

(x+1/2)^2=-23/4

vi (x+1/2)^2 >/0

=>pt vo nghiem

=>nghiem cua pt la 1

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

9 tháng 7 2018

A. \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+3x+2x+6\right)-\left(x^2+5x-2x-10\right)=0\)
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
\(\Leftrightarrow x^2+3x+2x-x^2-5x+2x=-6-10\)
\(\Leftrightarrow2x=-16\)
\(\Leftrightarrow x=-8\)
.Vậy \(S=\left\{-8\right\}\)

B. \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x+5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x+5x-20\)
\(\Leftrightarrow2x^2-8x+3x+x^2-2x-5x-3x^2+12x-5x=12-10-20\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\) . Vậy \(S=\left\{\dfrac{18}{5}\right\}\)

C. \(\left(8-4x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)
\(\Leftrightarrow8x-4x^2-8x+4x^2+4x-8x=-16+8\)

\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=2\) . Vậy \(S=\left\{2\right\}\)

D. \(\left(2x-3\right)\left(8x+2\right)=\left(4x+1\right)\left(4x-1\right)-3\)
\(\Leftrightarrow16x^2+4x-24x-6=16x^2+1^2-3\)
\(\Leftrightarrow16x^2+4x-24x-16x^2=6+1-3\)
\(\Leftrightarrow-20x=4\)
\(\Leftrightarrow x=-\dfrac{1}{5}\) . Vậy \(S=\left\{-\dfrac{1}{5}\right\}\)

9 tháng 7 2018

a)(x+2)(x+3)-(x-2)(x+5)=0

\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)

<=>2x=-16

<=>x=-8

b)(2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)

\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)

\(\Leftrightarrow5x=22\Leftrightarrow x=\dfrac{22}{5}\)

c)(8-4x)(x+2)+4(x-2)(x+1)=0

\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)

\(\Leftrightarrow-4x=-8\Leftrightarrow x=2\)

d)(2x-3)(8x+2)=(4x+1)(4x-1)-3

\(\Leftrightarrow16x^2+4x-24x-6=16x^2-4x+4x-1-3\)

\(\Leftrightarrow-20x=-2\Leftrightarrow x=\dfrac{-1}{10}\)

27 tháng 10 2020

Bài 3:

a) Ta có: \(x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4;-4\right\}\)

b) Ta có: \(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x\left(x^3-2x^2+10x-20\right)=0\)

\(\Leftrightarrow x\left[x^2\left(x-2\right)+10\left(x-2\right)\right]=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{0;2\right\}\)

c) Ta có: \(\left(2x-3\right)^2=\left(x+5\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\frac{2}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{8;-\frac{2}{3}\right\}\)

d) Ta có: \(x^2\left(x-1\right)-4x^2+8x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;2\right\}\)