K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 5 2019

Câu 1: ĐKXĐ: \(y\ge2\)

\(\Leftrightarrow\left\{{}\begin{matrix}6\left|2x-y\right|+3\sqrt{y-2}=15\\6\left|2x-y\right|-2\sqrt{y-2}=8\end{matrix}\right.\)

Trừ trên cho dưới ta được:

\(5\sqrt{y-2}=7\Leftrightarrow\sqrt{y-2}=\frac{7}{5}\Leftrightarrow y-2=\frac{49}{25}\Rightarrow y=\frac{99}{25}\)

Thay vào pt đầu:

\(2\left|2x-\frac{99}{25}\right|+\frac{7}{5}=5\Leftrightarrow\left|2x-\frac{99}{25}\right|=\frac{9}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{99}{5}=\frac{9}{5}\\2x-\frac{99}{5}=-\frac{9}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{54}{5}\\x=9\end{matrix}\right.\)

Vậy hệ có 2 cặp nghiệm \(\left(x;y\right)=\left(\frac{54}{5};\frac{99}{5}\right);\left(9;\frac{99}{5}\right)\)

NV
30 tháng 5 2019

Câu 2:

Phương trình hoành độ giao điểm: \(x^2-\left(m-1\right)x-m^2-1=0\)

Ta có \(ac=-m^2-1< 0\) \(\forall m\Rightarrow\) pt luôn có 2 nghiệm trái dấu hay (d) luôn cắt (P) tại 2 điểm nằm về 2 phía trục tung

b/ Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m^2-1\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2\right|=2\sqrt{2}\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=8\)

\(\Leftrightarrow\left(m-1\right)^2-2\left(-m^2-1\right)+2\left|-m^2-1\right|=8\)

\(\Leftrightarrow5m^2-2m-3=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{3}{5}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:
a)

Nhân $\sqrt{2}$ vào PT(1) và $\sqrt{3}$ vào PT(2) ta có:

HPT \(\Leftrightarrow \left\{\begin{matrix} \sqrt{6}x-4y=7\sqrt{2}\\ \sqrt{6}x+9y=-6\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow (\sqrt{6}x-4y)-(\sqrt{6}x+9y)=13\sqrt{2}\)

\(\Leftrightarrow -13y=13\sqrt{2}\Rightarrow y=-\sqrt{2}\)

\(\Rightarrow x=\frac{7+2\sqrt{2}y}{\sqrt{3}}=\sqrt{3}\)

Vậy..............

b)

Nhân $2+\sqrt{3}$ vào PT(1) và $(\sqrt{2}+1)$ vào PT(2) thu được:

\(\left\{\begin{matrix} (\sqrt{2}+1)(2+\sqrt{3})x-y=2(2+\sqrt{3})\\ (2+\sqrt{3})(\sqrt{2}+1)+y=2(\sqrt{2}+1)\end{matrix}\right.\)

Trừ theo vế:

\(\Rightarrow -2y=2(2+\sqrt{3})-2(\sqrt{2}+1)=2+2\sqrt{3}-2\sqrt{2}\)

\(\Rightarrow y=\sqrt{2}-\sqrt{3}-1\)

\(\Rightarrow x=\frac{2+(2-\sqrt{3})y}{\sqrt{2}+1}=1+\sqrt{2}-\sqrt{3}\)

Vậy.........

30 tháng 11 2019

a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:

\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)

\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)

\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)

\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)

P/s: Không chắc cho lắm ạ.

29 tháng 11 2019

Vũ Minh Tuấn, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm, Lê Thị Thục Hiền,

Học 24h, @tth_new, @Akai Haruma, Nguyễn Trúc Giang, Băng Băng 2k6

Help meeee, please!

thanks nhiều

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

25 tháng 7 2016

hiểu chưa 

25 tháng 7 2016

hieu chet lien

22 tháng 3 2016

bn chờ chút nhé mình đg bận

22 tháng 3 2016

Thằng thắng nó giải tùm  lum đấy coi chừng bị lừa đểu

NV
6 tháng 8 2020

1/ ĐKXĐ: ...

\(\Leftrightarrow x=2016-2015\sqrt{x}-x\)

\(\Leftrightarrow2x+2015\sqrt{x}-2016=0\)

Đặt \(\sqrt{x}=t\ge0\)

\(\Rightarrow2t^2+2015t-2016=0\)

Nghiệm xấu kinh khủng, bạn tự giải

2. ĐKXĐ: ...

\(x^2+4x+4+4y^2-8y+4=4xy+13\)

\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2y=1\\x-2y=-5< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=2y+1\)

Thay xuống dưới:

\(\sqrt{\frac{\left(x+y\right)\left(x-2y\right)}{x-y}}+\sqrt{x+y}=\frac{2}{\sqrt{\left(x-y\right)\left(x+y\right)}}\)

\(\Leftrightarrow\left(x+y\right)\sqrt{x-2y}+\left(x+y\right)\sqrt{x-y}=2\)

\(\Leftrightarrow3y+1+\left(3y+1\right)\sqrt{y+1}=2\)

\(\Leftrightarrow6y+\left(3y+1\right)\left(\sqrt{y+1}-1\right)=0\)

\(\Leftrightarrow6y+\frac{\left(3y+1\right)y}{\sqrt{y+1}+1}=0\)

\(\Leftrightarrow y\left(6+\frac{3y+1}{\sqrt{y+1}+1}\right)=0\Rightarrow y=0\Rightarrow x=1\)