K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 8 2020

1/ ĐKXĐ: ...

\(\Leftrightarrow x=2016-2015\sqrt{x}-x\)

\(\Leftrightarrow2x+2015\sqrt{x}-2016=0\)

Đặt \(\sqrt{x}=t\ge0\)

\(\Rightarrow2t^2+2015t-2016=0\)

Nghiệm xấu kinh khủng, bạn tự giải

2. ĐKXĐ: ...

\(x^2+4x+4+4y^2-8y+4=4xy+13\)

\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2y=1\\x-2y=-5< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=2y+1\)

Thay xuống dưới:

\(\sqrt{\frac{\left(x+y\right)\left(x-2y\right)}{x-y}}+\sqrt{x+y}=\frac{2}{\sqrt{\left(x-y\right)\left(x+y\right)}}\)

\(\Leftrightarrow\left(x+y\right)\sqrt{x-2y}+\left(x+y\right)\sqrt{x-y}=2\)

\(\Leftrightarrow3y+1+\left(3y+1\right)\sqrt{y+1}=2\)

\(\Leftrightarrow6y+\left(3y+1\right)\left(\sqrt{y+1}-1\right)=0\)

\(\Leftrightarrow6y+\frac{\left(3y+1\right)y}{\sqrt{y+1}+1}=0\)

\(\Leftrightarrow y\left(6+\frac{3y+1}{\sqrt{y+1}+1}\right)=0\Rightarrow y=0\Rightarrow x=1\)

NV
18 tháng 2 2020

a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)

Theo Viet đảo, \(x^2+x\)\(y^2+y\) là nghiệm của:

\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)

NV
18 tháng 2 2020

b/ ĐKXĐ: ...

\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)

Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)

\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)

\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)

8 tháng 12 2019

e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)

PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)

Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)

Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath

8 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new

e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ

thanks nhiều!

12 tháng 12 2017

\(pt\left(1\right)\Leftrightarrow\dfrac{\left(x-y-4\right)\left(x^2+4x+y^2-4y\right)}{x-y}=0\)

\(x\ne y \rightarrow (x-y-4)(x^2+4x+y^2-4y)=0\)