Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt hoành độ giao điểm: \(x^2-mx-m-1=0\)
\(a-b+c=1+m-m-1=0\) nên pt có 2 nghiệm:
\(\left\{{}\begin{matrix}x_1=-1\\x_2=m+1\end{matrix}\right.\) để 2 nghiệm pb \(\Rightarrow-1\ne m+1\Rightarrow m\ne-2\)
\(\Rightarrow\left\{{}\begin{matrix}y_1=x_1^2=1\\y_2=x_2^2=m^2+2m+1\end{matrix}\right.\)
\(y_1+y_2>5\Leftrightarrow m^2+2m+2>5\)
\(\Leftrightarrow m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)
Câu 1 :
a, Đáp án nên nó đúng nhoa
b, MinA = 2016,75 .
Câu 2 :
a, - \(\left[{}\begin{matrix}x=\pm1\\x=3\end{matrix}\right.\)
b, - Với m bằng - 3 .
Câu 3 :
a, \(\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
b, Hỏi tí vế 2 là bằng 4 hay - 4 .
Câu 1:
\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
\(\frac{x^2}{y+4}=\frac{5y+21}{x+1}\Leftrightarrow\frac{\left(m+3\right)^2}{m+4}=\frac{5m+21}{m+4}\) (\(m\ne-4\))
\(\Leftrightarrow m^2+6m+9=5m+21\)
\(\Leftrightarrow m^2+m-12=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-4\end{matrix}\right.\)
Câu 2:
\(\Delta=m^2-8>0\Rightarrow m^2>8\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=2\end{matrix}\right.\)
\(x_1^2+x_2^2=\sqrt{5}^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\)
\(\Leftrightarrow m^2-4=5\)
\(\Rightarrow m^2=9\)
\(\Rightarrow m=\pm3\)
a) Phương trình hoành độ giao điểm của (d) và (P) là
\(x^2=\left(m-1\right)x+4\Leftrightarrow x^2-\left(m-1\right)x-4=0\)
Ta có \(\Delta=\left(m-1\right)^2-4.\left(-4\right)=\left(m-1\right)^2+16\)
Vì \(\left(m-1\right)^2\ge0\forall m\Rightarrow\left(m-1\right)^2+16>0\forall m\)hay \(\Delta>0\)
Suy ra phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi giá trị của m
Do đó đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m
(hoặc lập luận cho ac=1.(-4)<0 nên có 2 nghiệm phân biệt ...)
b) Theo chứng minh ý a thì phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt , áp dụng hệ thức Vi-ét:
\(\hept{\begin{cases}x_1+x_2=m-1\\x_1x_2=-4\end{cases}}\)
Khi đó : \(y_1+y_2=y_1.y_2\Leftrightarrow x_1^2+x_2^2=x_1^2.x_2^2\)( có cái này là do parabol P y=x^2)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2\right)^2\Leftrightarrow\left(m-1\right)^2-2.\left(-4\right)=\left(-4\right)^2\)
\(\Leftrightarrow\left(m-1\right)^2=8\Leftrightarrow\orbr{\begin{cases}m-1=2\sqrt{2}\\m-1=-2\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}+1\\m=1-2\sqrt{2}\end{cases}}\)
Vậy...........................
a/
hoành độ giao điểm của (d) và ( p ) là nghiệm của phương trình
\(x^2-\left(m-1\right)x-4=0\)
den ta = \(\left(m-1\right)^2+16>0\forall m\)
=> phương trình luôn có 2 nghiệm phân biệt với mọi m
b/
vì \(y_1,y_2\) là tung độ giao điểm của (d ) và ( p )
=> \(y_1=x_1^2\)
\(y_2=x_2^2\)
theo vi - ét có \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-4\end{cases}}\)
ta có \(y_1+y_2=y_1.y_2\)
<=> \(x_1^2+x_2^2=x_1^2x_2^2\)
<=> \(\left(x_2+x_{ }_1\right)^2-2x_1x_2-x_1^2.x_2^2=0\)
<=> \(\left(m-1\right)^2-2.\left(-4\right)-\left(-4\right)^2=0\)
<=> \(m^2-2m+1+8-16=0\)
<=> \(m^2-2m-7=0\)
<=>\(\left(m-1\right)^2-8=0\)
<=> \(\left(m-1\right)^2=8\)
<=> \(m-1=2\sqrt{2}\left(h\right)m-1=-2\sqrt{2}\)
<=> \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)
vậy \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)
CHÚC BẠN HỌC TỐT
Câu 1: ĐKXĐ: \(y\ge2\)
\(\Leftrightarrow\left\{{}\begin{matrix}6\left|2x-y\right|+3\sqrt{y-2}=15\\6\left|2x-y\right|-2\sqrt{y-2}=8\end{matrix}\right.\)
Trừ trên cho dưới ta được:
\(5\sqrt{y-2}=7\Leftrightarrow\sqrt{y-2}=\frac{7}{5}\Leftrightarrow y-2=\frac{49}{25}\Rightarrow y=\frac{99}{25}\)
Thay vào pt đầu:
\(2\left|2x-\frac{99}{25}\right|+\frac{7}{5}=5\Leftrightarrow\left|2x-\frac{99}{25}\right|=\frac{9}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{99}{5}=\frac{9}{5}\\2x-\frac{99}{5}=-\frac{9}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{54}{5}\\x=9\end{matrix}\right.\)
Vậy hệ có 2 cặp nghiệm \(\left(x;y\right)=\left(\frac{54}{5};\frac{99}{5}\right);\left(9;\frac{99}{5}\right)\)
Câu 2:
Phương trình hoành độ giao điểm: \(x^2-\left(m-1\right)x-m^2-1=0\)
Ta có \(ac=-m^2-1< 0\) \(\forall m\Rightarrow\) pt luôn có 2 nghiệm trái dấu hay (d) luôn cắt (P) tại 2 điểm nằm về 2 phía trục tung
b/ Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m^2-1\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=2\sqrt{2}\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=8\)
\(\Leftrightarrow\left(m-1\right)^2-2\left(-m^2-1\right)+2\left|-m^2-1\right|=8\)
\(\Leftrightarrow5m^2-2m-3=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{3}{5}\end{matrix}\right.\)