Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tanC=\dfrac{AB}{AC}=\dfrac{4}{7}\Rightarrow C\approx29^045'\)
Độ dài của thang là:
\(AB=\dfrac{12}{sin72^0}\approx12,6\left(m\right)\)
Bài 7: Sửa đề; AB=12cm; BC=20cm
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=20^2-12^2=256\)
=>AC=16(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot20=12^2=144\)
=>BH=144/20=7,2(cm)
b: ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(AH^2=AC^2-HC^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HB\cdot HC=AC^2-HC^2\)
Bài 8:
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=15^2-9^2=144\)
=>\(AC=\sqrt{144}=12\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot15=9^2=81\)
=>BH=81/15=5,4(cm)
b: Sửa đề: Kẻ tia phân giác AM của góc BAC. Tính diện tích tam giác ABM
Xét ΔABC có AM là phân giác
nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}=\dfrac{9}{12}=\dfrac{3}{4}\)
=>\(\dfrac{MC}{MB}=\dfrac{4}{3}\)
=>\(\dfrac{MC+MB}{MB}=\dfrac{4}{3}+1=\dfrac{7}{3}\)
=>\(\dfrac{BC}{MB}=\dfrac{7}{3}\)
=>\(\dfrac{MB}{BC}=\dfrac{3}{7}\)
=>\(\dfrac{S_{AMB}}{S_{ABC}}=\dfrac{3}{7}\)
=>\(S_{AMB}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{3}{14}\cdot9\cdot12\)
=>\(S_{AMB}=\dfrac{162}{7}\simeq23,1\left(cm^2\right)\)
a: góc ACB=180-6-4=170 độ
Xét ΔCAB có AB/sinC=BC/sinA=AC/sinB
=>762/sin170=BC/sin6=AC/sin4
=>BC=458,69m; AC=306,10(m)
S CAB=1/2*CA*CB*sinC
\(=\dfrac{1}{2}\cdot458.69\cdot306.10\cdot sin170\simeq12190,54\left(m^2\right)\)
=>\(CH=2\cdot\dfrac{12190.54}{762}\simeq32\left(m\right)\)
b: An đến trường lúc:
6h+458,69:1000:4+306,10:1000:19\(\simeq6h8p\)
Lời giải:
Xét tam giác vuông $ABC$ có:
$\frac{AC}{BC}=\sin \widehat{ABC}$
$\Leftrightarrow \frac{AC}{12}=\sin 60^0$
$\Rightarrow AC=12.\sin 60^0=6\sqrt{3}$ (m)
Sửa đề: AB=3cm; AC=4cm; BH=1,8cm
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(BA^2=BH\cdot BC\)
=>BC=3^2/1,8=5(cm)
ΔABC vuông tại A có AH là đường cao
nên CA^2=CH*CB
=>CH*5=4^2=16
=>CH=3,2(cm)
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>AH^2=3^2-1,8^2=5,76
=>AH=2,4(cm)
b: góc tạo bởi thang với tường là:
90-63=27 độ
Chiều cao của thang so với mặt đất là:
\(7\cdot sin27\simeq3,18\left(cm\right)\)
sin 30=AC/BC
=>AC/1,3=1/2
=>AC=0,65m