K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 giờ trước (21:30)

Olm chào em, khi đăng câu hỏi lên diễn đàn Olm, em cần đăng đầy đủ nội dung và yêu cầu, để nhận được sự trợ giúp tốt nhất từ cộng đồng Olm em nhé. Cảm ơn em đã đồng hành cùng Olm. Chúc em học tập hiệu quả và vui vẻ cùng Olm.

10 giờ trước (8:44)

Câu hỏi?

11 tháng 3 2020

B

9 tháng 7 2019

a) Bình phương lên,ta so sánh \(\left(\sqrt{5}+\sqrt{7}\right)^2=5+2\sqrt{35}+7\text{ và }12\)

Xét hiệu hai vế \(\left(\sqrt{5}+\sqrt{7}\right)^2-12=2\sqrt{35}>0\) nên ....

b) \(14=\sqrt{14^2}=\sqrt{196}>\sqrt{195}=\sqrt{13}.\sqrt{15}\)

c) \(\left(\sqrt{8}+3\right)^2=8+2.\sqrt{72}+9;\left(6+\sqrt{2}\right)^2=36+2\sqrt{72}+2\)

\(\left(8+\sqrt{3}\right)^2-\left(6+\sqrt{2}\right)^2=\left(8+9\right)-\left(36+2\right)< 0\)

Do đó \(\left(8+\sqrt{3}\right)^2< \left(6+\sqrt{2}\right)^2\) suy ra \(\left(8+\sqrt{3}\right)< \left(6+\sqrt{2}\right)\)

d) So sánh \(\sqrt{27}+\sqrt{6}\text{ và }\sqrt{48}-1\)

Dễ chứng minh \(\sqrt{27}+\sqrt{6}> \sqrt{48}-1\)

Suy ra \(\sqrt{27}+\sqrt{6}+1>\sqrt{48}\) (thêm 1 vào mỗi vế)

31 tháng 7 2018

a)

\(\left(\sqrt{5}+\sqrt{7}\right)^2=12+2\sqrt{35}\)

\(\sqrt{12}^2=12\)

=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)

các câu còn lại cũng làm như vậy

28 tháng 8 2018

hay đấyHọc tốt

6 tháng 7 2018

Tính ra rồi so sánh

6 tháng 7 2018

a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)

ta có \(\sqrt{5}>\sqrt{3}\)\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)

Bài 4:

a: \(=2-\sqrt{3}+\sqrt{3}-1=1\)

b: \(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

c: \(=\dfrac{\left(15\cdot10\sqrt{2}-3\cdot15\sqrt{2}+2\cdot5\sqrt{2}\right)}{\sqrt{10}}\)

\(=15\cdot\sqrt{20}-3\cdot\sqrt{45}+2\cdot\sqrt{5}\)

\(=30\sqrt{5}-9\sqrt{5}+2\sqrt{5}=33\sqrt{5}\)

AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Lời giải:

a)

\(\sqrt{6}-\sqrt{7}=\frac{6-7}{\sqrt{6}+\sqrt{7}}=\frac{-1}{\sqrt{6}+\sqrt{7}}\)

\(\sqrt{7}-\sqrt{8}=\frac{7-8}{\sqrt{7}+\sqrt{8}}=\frac{-1}{\sqrt{7}+\sqrt{8}}\)

Thấy rằng \(\sqrt{6}+\sqrt{7}< \sqrt{7}+\sqrt{8}\)

\(\Rightarrow \frac{1}{\sqrt{6}+\sqrt{7}}> \frac{1}{\sqrt{7}+\sqrt{8}}\Rightarrow \frac{-1}{\sqrt{6}+\sqrt{7}}< \frac{-1}{\sqrt{7}+\sqrt{8}}\)

Hay $\sqrt{6}-\sqrt{7}< \sqrt{7}-\sqrt{8}$

b)

\(\sqrt{15}-\sqrt{14}=\frac{15-14}{\sqrt{15}+\sqrt{14}}=\frac{1}{\sqrt{15}+\sqrt{14}}\)

\(\sqrt{13}-\sqrt{12}=\frac{13-12}{\sqrt{13}+\sqrt{12}}=\frac{1}{\sqrt{13}+\sqrt{12}}\)

Dễ thấy \(\sqrt{15}+\sqrt{14}> \sqrt{13}+\sqrt{12}\Rightarrow \frac{1}{\sqrt{15}+\sqrt{14}}< \frac{1}{\sqrt{13}+\sqrt{12}}\)

Hay \(\sqrt{15}-\sqrt{14}< \sqrt{13}-\sqrt{12}\)

30 tháng 6 2019

Thank you ^.^

23 tháng 4 2017

Công thức D đúng

30 tháng 4 2017

Câu D đúng vì ta có: \(\sqrt{9x^2}=\sqrt{\left(3x\right)^2}=\left|3x\right|\)

Vì x<0 \(\Rightarrow3x< 0\)\(\Rightarrow\left|3x\right|=-3x\)\(\Rightarrow\sqrt{9x^2}=-3x\)

31 tháng 7 2019

\(\sqrt{13-2\sqrt{42}}=\sqrt{6-2\sqrt{6}.\sqrt{7}+7}=\sqrt{\left(\sqrt{6}-\sqrt{7}\right)^2}=\left|\sqrt{6}-\sqrt{7}\right|=\sqrt{7}-\sqrt{6}\)

\(\sqrt{46+6\sqrt{5}}=\sqrt{45+6\sqrt{5}+1}=\sqrt{3^2.5+6\sqrt{5}+1}=\sqrt{3^2.5+2.3.\sqrt{5}+1^2}=\sqrt{\left(3.\sqrt{5}+1\right)^2}=3\sqrt{5}+1\)

\(\sqrt{12-3\sqrt{15}}=\sqrt{3}\sqrt{4-\sqrt{15}}=\sqrt{\frac{3}{2}}.\sqrt{8-2\sqrt{15}}=\sqrt{\frac{3}{2}}.\sqrt{3-2\sqrt{15}+5}=\sqrt{\frac{3}{2}}.\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{\frac{3}{2}}.\left(\sqrt{5}-\sqrt{3}\right)\)

\(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3-2\sqrt{15}+5}-\sqrt{8+2\sqrt{15}}=\sqrt{3-2\sqrt{3}\sqrt{5}+5}-\sqrt{3+2\sqrt{3}\sqrt{5}+5}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{5}=-2\sqrt{3}\)

\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\sqrt{\frac{1}{2}}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{1+2\sqrt{5}+5}-\sqrt{1-2\sqrt{5}+5}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\right)=\sqrt{\frac{1}{2}}\left(1+\sqrt{5}-\sqrt{5}+1\right)=\sqrt{\frac{1}{2}}.2=\sqrt{\frac{4}{2}}=\sqrt{2}\)

28 tháng 6 2019

Cái này mk làm câu a), câu b) bạn tự áp dụng nha :3

a)

\(\sqrt{6}-\sqrt{7}=\frac{\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{6}+\sqrt{7}\right)}{\left(\sqrt{6}+\sqrt{7}\right)}=\frac{6-7}{\sqrt{6}+\sqrt{7}}=\frac{-1}{\sqrt{6}+\sqrt{7}}\)

Tương tự ta có \(\sqrt{7}-\sqrt{8}=\frac{-1}{\sqrt{7}+\sqrt{8}}\)

Dễ dàng thấy \(\sqrt{7}+\sqrt{8}>\sqrt{6}+\sqrt{7}\Rightarrow\frac{1}{\sqrt{7}+\sqrt{8}}< \frac{1}{\sqrt{6}+\sqrt{7}}\Leftrightarrow\frac{-1}{\sqrt{7}+\sqrt{8}}>\frac{-1}{\sqrt{6}+\sqrt{7}}\)

Vậy \(\sqrt{7}-\sqrt{8}>\sqrt{6}-\sqrt{7}\)