Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
=>(n+2)=5 :.n+2
=>5:. n+2
=>n+2 E (1,5)
th1
N+2=1
th2 tựlamf
a) Ta có 2n+8=2(n-3)+14
=> 14 chia hết cho n-3
n nguyên => n-3 nguyên => n-3\(\in\)Ư(14)={-14;-7;-2;-1;1;2;7;14}
ta có bảng
n-3 | -14 | -7 | -2 | -1 | 1 | 2 | 7 | 14 | |
n | -11 | -4 | 1 | 2 | 4 | 5 | 10 | 17 |
Vậy n={-11;-4;-1;2;4;5;10;17}
b) Ta co 3n+11=3(n-5)-4
=> 4 chia hết chia hết cho n+5
n nguyên => n+5 nguyên
=> n+5\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
ta có bảng
n+5 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -9 | -7 | -6 | -4 | -3 | -1 |
vậy n={-9;-7;-6;-4;-3;-1}
Gọi a là số bị chia, c là số chia, k là thương cần tìm, d là số dư
Khi đó ta có a = c.k +d (1)
vì khi thêm vào số bị chia 90 đơn vị, tăng số chia lên 6 đơn vị mà thương và số dư không đổi nên ta có:
a +90 = (c +6).k +d <=> a+ 90 = c.k + 6k +d <=> a = c.k +6k +d -90 (2)
Từ (1) và (2) ta có: ck +d = ck +6k +d -90
<=> 6k -90 =0 <=> k =15
Theo đề bài ta chỉ cần tìm thương tức là tìm k = 15
Kết luận: thương cần tìm là k=15
1) Tổng quát ta có A = \(\sum\limits^{k=1}_n\frac{1}{2^k}\) khi đó \(\lim\limits_{x\rightarrow+\infty}A=0\)
1, tổng cấp số nhân lùi vô hạn \(A=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1\)
số nào cũng được
hok tốt/skr