K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2021

Trong 5 số tự nhiên liên tiếp luôn có:

+ 1 số chia hết cho 5

+ 2 số chia hết cho 2

+ 1 số chia hết cho 3

=> Tích của 5 số tự nhiên liên tiếp \(⋮2.2.3.5=60\)

18 tháng 6 2021

Tích hay tổng bạn ơi

Giải:

Gọi 5 số liên tiếp đó lần lượt là:

\(a;a+1;a+2;a+3;a+4\) với \(a\in N\)

Theo đề bài, ta có:

\(a.\left(a+1\right).\left(a+2\right).\left(a+3\right).\left(a+4\right)\) 

\(=5a.\left(1.2.3.4\right)\) 

\(=5a.24\) 

\(=120a⋮60\left(đpcm\right)\)  

Vậy tích 5 số tự nhiên liên tiếp chia hết cho 60.

18 tháng 6 2021

a=0 à em?

a

=>(n+2)=5 :.n+2

=>5:. n+2

=>n+2 E (1,5)

th1

N+2=1

th2 tựlamf

20 tháng 10 2019

x không có giá trị đúng bởi vì trong bài ghi n ko phải x 

a: Sửa đề: Tìm GTNN

B=|x-2022|+|x-1|>=|x-2022+1-x|=2021

Dấu = xảy ra khi 1<=x<=2022

b: C=(3-3^2+3^3)-3^3(3-3^2+3^3)+...-3^21(3-3^2+3^3)

=21(1-3^3+3^6-...-3^21) chia hết cho 21

C=(3-3^2+3^3-3^4)+3^4(3-3^2+3^3-3^4)+...+3^20(3-3^2+3^3-3^4)

=-60(1+3^4+...+3^20) chia hết cho 60

=>A chia hết cho BCNN(21;60)=420

8 tháng 8 2017

\(S=5+5^2+5^3+.............+5^{2004}\)

\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+..........+\left(5^{2001}+5^{2004}\right)\) (\(1007\) nhóm)

\(\Leftrightarrow S=5\left(1+5^3\right)+5^2\left(1+5^3\right)+..........+5^{2001}\left(1+5^3\right)\)

\(\Leftrightarrow S=5.126+5^2.126+............+5^{2001}.126\)

\(\Leftrightarrow S=126\left(5+5^2+...........+5^{2001}\right)⋮126\)

\(\Leftrightarrow S⋮126\rightarrowđpcm\)

8 tháng 8 2017

\(S=5+5^2+5^3+5^4+...+5^{2004}\\ =\left(5+5^3\right)+\left(5^2+5^4\right)+...+\left(5^{2001}+5^{2003}\right)+\left(5^{2002}+5^{2004}\right)\\ =5\cdot\left(1+5^2\right)+5^2\cdot\left(1+5^2\right)+...+5^{2001}\cdot\left(1+5^2\right)+5^{2002}\cdot\left(1+5^2\right)\\ =\left(1+5^2\right)\cdot\left(5+5^2+...+5^{2001}+5^{2002}\right)\\ =26\cdot\left(5+5^2+...+5^{2001}+5^{2002}\right)⋮26\)

Vậy \(S⋮26\)