K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

hai góc bằng nhau thì hai góc đó đối đỉnh 

mọi số chia hết cho 3 thì chia hết cho 6

mọi tứ giác có 2 đường chéo bằng nhau thì tứ giác đó là hình chữ nhật

NV
14 tháng 5 2021

1.

\(\widehat{ABC}=60^0\Rightarrow\Delta ABC\) đều

\(\Rightarrow S_{ABCD}=2S_{ABC}=2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{2}\)

Gọi O là giao điểm 2 đường chéo \(\Rightarrow SO\perp AC\Rightarrow SO\perp\left(ABCD\right)\)

\(SO=\dfrac{AC\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{a^3}{4}\)

NV
14 tháng 5 2021

2.

Gọi M là trung điểm AB \(\Rightarrow SM\perp AB\Rightarrow SM\perp\left(ABCD\right)\)

\(SM=\dfrac{AB\sqrt{3}}{2}\) (trung tuyến tam giác đều)

Áp dụng định lý Pitago cho tam giác vuông MBC:

\(CM^2=BM^2+BC^2=\left(\dfrac{AB}{2}\right)^2+\left(2AB\right)^2=\dfrac{17AB^2}{4}\)

Áp dụng định lý Pitago cho tam giác vuông SMC:

\(SC^2=SM^2+CM^2\Leftrightarrow5a^2=\dfrac{3AB^2}{4}+\dfrac{17AB^2}{4}=5AB^2\)

\(\Rightarrow AB=a\Rightarrow\left\{{}\begin{matrix}AD=2a\\SM=\dfrac{a\sqrt{3}}{2}\end{matrix}\right.\)

\(V=\dfrac{1}{3}.SM.AB.AD=\dfrac{a^3\sqrt{3}}{3}\)

14 tháng 8 2017

Đáp án D.

4 tháng 12 2018

6 tháng 11 2018

13 tháng 12 2017

12 tháng 11 2017

18 tháng 12 2018

Đáp án D

17 tháng 8 2019

Đáp án D.     

Phương pháp giải: Dựng hình, dựa vào tam giác cân để xác định các yếu tố vuông góc

Lời giải: Với hình chóp tam giác đều S.ABC thì: góc giữa các cạnh bên và mặt đáy bằng nhau, hình chiếu vuông góc của S trên mặt phẳng (ABC) là trọng tâm tam giác ABC, hai cạnh đối diện vuông góc với nhau.

3 tháng 1 2018