K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 8 2021

Do MN là đường trung bình tam giác ABC \(\Rightarrow MN||AB\) mà \(AB||CD\Rightarrow MN||CD\)

MN và (ABCD) không có điểm chung \(\Rightarrow MN||\left(ABCD\right)\)

MN và (SCD) không có điểm chung \(\Rightarrow MN||\left(SCD\right)\)

MN nằm trên (SAB) nên MN không song song (SAB)

Vậy MN song song với cả (ABCD) và (SCD)

5 tháng 8 2021

vẽ hình dùm em luôn ạ  

em cảm ơn thầy 

NV
14 tháng 1 2022

\(\lim\left(\sqrt{n^2+3n}+4n\right)=\lim n\left(\sqrt{1+\dfrac{3}{n}}+4\right)=+\infty\left(1+4\right)=+\infty\)

\(\lim\left(\sqrt[3]{1-n^3+n^2}+n\right)=\lim\dfrac{1+n^2}{\sqrt[3]{\left(1-n^3+n^2\right)^2}-n\sqrt[3]{1-n^3+n}+n^2}\)

\(=\lim\dfrac{\dfrac{1}{n^2}+1}{\sqrt[3]{\left(\dfrac{1}{n^3}-1+\dfrac{1}{n}\right)^2}-\sqrt[3]{\dfrac{1}{n^3}-1+\dfrac{1}{n^2}}+1}=\dfrac{1}{1-\left(-1\right)+1}=\dfrac{1}{3}\)

\(\lim\left(\sqrt[]{n^2+4n+1}-\sqrt[]{n^2-3n+5}\right)=\lim\dfrac{7n-4}{\sqrt[]{n^2+4n+1}+\sqrt[]{n^2-3n+5}}\)

\(=\lim\dfrac{7-\dfrac{4}{n}}{\sqrt[]{1+\dfrac{4}{n}+\dfrac{1}{n^2}}+\sqrt[]{1-\dfrac{3}{n}+\dfrac{5}{n^2}}}=\dfrac{7}{1+1}=\dfrac{7}{2}\)

4*cos(pi/6-a)*sin(pi/3-a)

=4*(cospi/6*cosa+sinpi/6*sina)*(sinpi/3*cosa-sina*cospi/3)

=4*(căn 3/2*cosa+1/2*sina)*(căn 3/2*cosa-1/2*sina)

=4*(3/4*cos^2a-1/4*sin^2a)

=3cos^2a-sin^2a

=3(1-sin^2a)-sin^2a

=3-4sin^2a

=>m=3; n=-4

m^2-n^2=-7

Ta có:

\(\dfrac{1}{cos^2x-sin^2x}+\dfrac{2tanx}{1-tan^2x}=\dfrac{1}{cos2x}+tan2x=\dfrac{1}{cos2x}+\dfrac{sin2x}{cos2x}=\dfrac{1+sin2x}{cos2x}=\dfrac{cos2x}{1-sin2x}\)

\(\Rightarrow P=a+b=2+1=3\)

a: \(G\in\left(SAD\right)\)

\(G\in GB\subset\left(GBC\right)\)

Do đó: \(G\in\left(SAD\right)\cap\left(GBC\right)\)

Xét (SAD) và (GBC) có

\(G\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó:(SAD) giao (SBC)=xy,xy đi qua G và xy//AD//BC

b: ABCD là hình bình hành tâm O

nên O là trung điểm chung của AC và BD

Xét ΔACB có

I,O lần lượt là trung điểm của CB,CA

=>IO là đường trung bình của ΔCAB

=>IO//AB

IO//AB

AB\(\subset\)(SAB)

IO không thuộc mp(SAB)

Do đó: IO//(SAB)

c: Xét ΔSAC có

H,O lần lượt là trung điểm của CS,CA

=>HO là đường trung bình của ΔSAC

=>HO//SA

HO//SA

SA\(\subset\)(SAB)

HO không nằm trong mp(SAB)

Do đó: HO//(SAB)

Ta có: IO//(SAB)

HO//(SAB)

IO,HO\(\subset\)(OHI)

Do đó: (OHI)//(SAB)