Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đl sin có:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow b=a\dfrac{sinB}{sinA};c=\dfrac{sinC}{sinA}.a\)
Mà `b+c=2a`
\(\Rightarrow a\dfrac{sinB}{sinA}+a\dfrac{sinC}{sinA}=2a\\ \Rightarrow\dfrac{sinB}{sinA}+\dfrac{sinC}{sinA}=2\\ \Leftrightarrow sinB+sinC=2sinA\)
Chọn B
\(sin^2\dfrac{A}{2}=\dfrac{b-c}{2b}\)
\(\Leftrightarrow\dfrac{1-cosA}{2}=\dfrac{b-c}{2b}\)
\(\Leftrightarrow1-\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{b-c}{b}=1-\dfrac{c}{b}\)
\(\Leftrightarrow b^2+c^2-a^2=2c^2\)
\(\Leftrightarrow a^2+c^2=b^2\)
Tam giác vuông tại B
\(\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}\Rightarrow tan\left(\dfrac{A}{2}+\dfrac{B}{2}\right)=tan\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)\)
\(\Rightarrow\dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=cot\dfrac{C}{2}=\dfrac{1}{tan\dfrac{C}{2}}\)
\(\Rightarrow tan\dfrac{A}{2}.tan\dfrac{C}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}=1-tan\dfrac{A}{2}tan\dfrac{B}{2}\)
\(\Rightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}=1\)
Ta có:
\(tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\ge\sqrt{3\left(tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}\right)}=\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(A=B=C\) hay tam giác ABC đều
Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)
\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)
Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)
\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)
Lời giải:
\(\frac{1+\cos B}{\sin B}=\frac{2a+c}{\sqrt{(2a-c)(2a+c)}}\)
\(\Rightarrow \frac{(1+\cos B)^2}{\sin ^2B}=\frac{2a+c}{2a-c}\) (bình phương 2 vế)
\(\Leftrightarrow \frac{1+\cos ^2B+2\cos B}{\sin ^2B}=\frac{2a-c+2c}{2a-c}\)
\(\Leftrightarrow \frac{\sin ^2B+2\cos ^2B+2\cos B}{\sin ^2B}=1+\frac{2c}{2a-c}\)
\(\Leftrightarrow \frac{\cos ^2B+\cos B}{\sin ^2B}=\frac{c}{2a-c}\)
\(\Rightarrow (2a-c)(\cos ^2B+\cos B)=c\sin ^2B\)
\(\Leftrightarrow 2a\cos ^2B+(2a-c)\cos B=c\sin ^2B+c\cos ^2B=c(\sin ^2B+\cos ^2B)=c\)
\(\Leftrightarrow 2a(\cos ^2B+\cos B)=c(\cos B+1)\)
\(\Leftrightarrow (\cos B+1)(2a\cos B-c)=0\)
Với mọi \(\widehat{B}< 180^0\Rightarrow \cos B+1\neq 0\). Suy ra \(2a\cos B-c=0\Rightarrow \cos B=\frac{c}{2a}\)
Kẻ đường cao $CH$ xuống $AB$
\(\cos B=\frac{BH}{BC}=\frac{BH}{a}=\frac{c}{2a}\)
\(\Rightarrow BH=\frac{c}{2}\) hay $H$ là trung điểm của $AB$. Vậy $CH$ đồng thời là đường cao và đường trung tuyến, suy ra tam giác $ABC$ cân tại $C$
Dễ dàng c/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)
Ta có : \(\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\dfrac{1}{a+b+4}\le\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}\right)\)
Suy ra : \(\Sigma\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le2.\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\)
" = " \(\Leftrightarrow a=b=c=1\)
\(sin\dfrac{B}{2}=\dfrac{b}{2\sqrt{ac}}\Rightarrow sin^2\dfrac{B}{2}=\dfrac{b^2}{4ac}\Rightarrow\dfrac{1-cosB}{2}=\dfrac{b^2}{4ac}\)
\(\Rightarrow1-\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{b^2}{2ac}\Rightarrow2ac-a^2-c^2+b^2=b^2\)
\(\Rightarrow-\left(a-c\right)^2=0\Rightarrow a=c\)
\(\Rightarrow\Delta ABC\) cân tại B