K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2019

Đáp án: D

a sai vì nếu tam giác ABC thỏa mãn AB + AC2 = BC2 thì tam giác ABC vuông tại A không phải vuông tại B.

b, c, d đúng.

24 tháng 12 2019

Hình bình hành ABCD có hai đường chéo bằng nhau, nên nó là hình chữ nhật, tức là tam giác ABC vuông.

Chọn A.

NV
30 tháng 4 2021

\(\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}\Rightarrow tan\left(\dfrac{A}{2}+\dfrac{B}{2}\right)=tan\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)\)

\(\Rightarrow\dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=cot\dfrac{C}{2}=\dfrac{1}{tan\dfrac{C}{2}}\)

\(\Rightarrow tan\dfrac{A}{2}.tan\dfrac{C}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}=1-tan\dfrac{A}{2}tan\dfrac{B}{2}\)

\(\Rightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}=1\)

Ta có:

\(tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\ge\sqrt{3\left(tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}\right)}=\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=C\) hay tam giác ABC đều

2 tháng 4 2017

Điều kiện cần và đủ của tam giác ABC vuông tại A là các cạnh của nó thỏa mãn hệ thức :

a2 + b2 = c2

(a, b, c độ dài các cạnh theo thứ tự đối diện các đỉnh A, B, C)



19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Gọi M là trung điểm của cạnh BC ta có :

\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}=\overrightarrow{AD}\)

Mặt khác :

\(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CB}\)

Theo giả thiết ta có :

\(\left|2\overrightarrow{AM}\right|=\left|\overrightarrow{CB}\right|=\left|\overrightarrow{AD}\right|\) hay \(AM=\dfrac{BC}{2}\)

Ta suy ra ABC là tam giác vuông tại A

6 tháng 5 2022

\(\cos2A+\cos2B+\cos2C=-1\)

\(\Leftrightarrow\cos2A+\cos2B+\cos2C+1=0\)

\(\Leftrightarrow2\cos\left(A+B\right)\cos\left(A-B\right)+2\cos^2C=0\)

\(\Leftrightarrow2\cos\left(180^0-C\right)\cos\left(A-B\right)+2\cos^2C=0\)

\(\Leftrightarrow-2\cos C\cos\left(A-B\right)+2\cos^2C=0\)

\(\Leftrightarrow-2\cos C(\cos\left(A-B\right)-\cos C)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos C=0\\\cos\left(A-B\right)=\cos C\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}C=90^0\\A-B=C\\A-B=-C\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}C=90^0\\A=B+C\\A+C=B\end{matrix}\right.\)

Nếu \(A=B+C\Rightarrow A=B+C=\dfrac{180^o}{2}=90^o\) Tam giác ABC vuông tại A.

Nếu \(B=A+C\Rightarrow B=A+C=\dfrac{180^o}{2}=90^o\) Tam giác ABC vuông tại B.

Vậy, nếu \(\cos2A+\cos2B+\cos2C=-1\) thì tam giác ABC là tam giác vuông.

 
NV
12 tháng 3 2021

\(a^2=b^2+c^2-bc\Rightarrow bc=b^2+c^2-a^2\)

\(\Rightarrow cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{bc}{2bc}=\dfrac{1}{2}\Rightarrow A=60^0\)

Tương tự: \(ac=a^2+c^2-b^2\Rightarrow cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{1}{2}\Rightarrow B=60^0\)

\(\Rightarrow C=180^0-\left(A+B\right)=60^0\)

\(\Rightarrow A=B=C=60^0\Rightarrow\Delta ABC\) đều

19 tháng 11 2019

A B C M E N F P D

Gọi AD là phân giác trong của \(\Delta\)ABC. Kéo dài DM cắt BE và CA lần lượt tại N và F, AN cắt BC tại P.

Dễ thấy \(\Delta\)ADB cân tại D có trung tuyến DM, suy ra DM là trung trực của AB

Do vậy ^DAN = ^DBN = 90o suy ra AP vuông góc AD hay AP là phân giác ngoài của \(\Delta\)ABC

Từ đó \(\left(BCPD\right)=-1\). Áp dụng phép chiếu xuyên tâm N: \(\left(BCPD\right)\rightarrow\left(ECFA\right)\)

Khi đó (ECFA) là hàng điều hòa. Mà ^AMF = 90o nên MA chính là phân giác của ^CME (đpcm).