Trong các mệnh đề sau

a. Nếu tam giác ABC thỏa mã...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

a) "Nếu ABC là một tam giác đều thì AB = BC = CA", cả hai mệnh đề đều đúng

b) "Nếu \(\widehat{C}>\widehat{A}\) thì AB > BC". Cả hai mệnh đề đều đúng

c) "Nếu ABC là một tam giác vuông thì \(\widehat{A}=90^0\)"

Nếu tam giác ABC vuông tại B (hoặc C) thì mệnh đề đảo sai

18 tháng 5 2016

định lý hàm số sin: 
a/ \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\)2R 
=> a = 2R.sinA = 2R.sin[180o - (B+C)] = 2R.sin(B+C) 
và b = 2R.sinB; c = 2R.sinC thay vào (*) được: 
 \(\frac{2R\times sinB}{cosB}+\frac{2R\times sinC}{cosC}=\frac{2R\times sin\left(B+C\right)}{sinBsinC}\)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC) 
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC) 
<=> cosBcosC = sinB.sinC 
<=> cosBcosC - sinB.sinC = 0 
<=> cos(B+C) = 0 
<=> B+C = 90o 
vậy tam giác ABC vuông tại A

18 tháng 5 2016

b/cosB+c/cosC=a/sinB.sinC (*) 

Áp dụng định lý hàm số sin: 
a/sinA = b/sinB = c/sinC = 2R 
=> a = 2R.sinA = 2R.sin[1800 - (B+C)] = 2R.sin(B+C) 
và b = 2R.sinB; c = 2R.sinC thay vào (*) được: 
2R.sinB/cosB + 2RsinC/cosC = 2R.sin(B+C)/(sinB.sinC) 
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC) 
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC) 
<=> cosBcosC = sinB.sinC 
<=> cosBcosC - sinB.sinC = 0 
<=> cos(B+C) = 0 
<=> B+C = 900

25 tháng 8 2016

lần đầu e thấy thầy giải luôn 

Câu 1 : Cho A = [-2;3) và B = ( m-1;m+1) . Ta có A hợp B =∅ khi và chỉ khi m thuộc : A .[-1;2) B. (- \(\infty\); 3)\(\cup\) [ 4;+\(\infty\) ) C. (-\(\infty\);-3] D . [-3;4) Câu 2 : Khẳng định nào sai ? A .( A \(\cup\) B) \(\cap\) C=A\(\cup\)(B \(\cap\) C) B .(A\(\cap\)B) ⊂ A C. A=(A\(\cap\)B) \(\cup\) (A\ B) D.(B\A)⊂B Câu 3 : Trong các mệnh đề sau đây...
Đọc tiếp

Câu 1 : Cho A = [-2;3) và B = ( m-1;m+1) . Ta có A hợp B =∅ khi và chỉ khi m thuộc :

A .[-1;2) B. (- \(\infty\); 3)\(\cup\) [ 4;+\(\infty\) ) C. (-\(\infty\);-3] D . [-3;4)

Câu 2 : Khẳng định nào sai ?

A .( A \(\cup\) B) \(\cap\) C=A\(\cup\)(B \(\cap\) C) B .(A\(\cap\)B) ⊂ A C. A=(A\(\cap\)B) \(\cup\) (A\ B) D.(B\A)⊂B

Câu 3 : Trong các mệnh đề sau đây mệnh đề nào sai ?

A . Hình bình hành có hai đường chéo bằng nhau là hình vuông

B . Tam giác cân có một góc bằng 60 độ là tam giác đều

C .∃x ∈ Q : x2 \(\le\)0

D .∃x ∈ Q : x2\(\le\) 5

Câu 4: Trong các mệnh đề sau mệnh đề nào có mệnh đề đảo đúng ?

A . Nếu hai tam giác bằng nhau thì có diện tích bằng nhau

B . Nếu một số tận cùng bằng 0 thì số đó chia hết cho 5

C .Nếu a chia hết cho 3 thì a chia hết cho 9

D .Nếu a và b chia hết cho c thì a+b chia hết cho c

Câu 5 : Cho hai tập hợp A ={ x ∈ R | (2x - x2)( 2x2 - 3x - 2) =0 } , B = {n ∈ N | 3 < n2 < 30} , chọn mệnh đề đúng

A . A\(\cap B=\left\{2\right\}\) B.A\(\cap B=\left\{3\right\}\) C. A\(\cap B=\left\{5;4\right\}\) D. A\(\cap B=\left\{2;4\right\}\)

1

Câu 1: B

Câu 2: C

Câu 3: A

Câu 4: D

Câu 5: A

13 tháng 4 2016

a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.

Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.

Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.

Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.

 

b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.

Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.

Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.

Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.

 

c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.

Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.

Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.

Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.

13 tháng 4 2016

a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.

Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.

Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.

Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.

b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.

Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.

Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.

Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.

c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.

Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.

Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.

Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.

 

2 tháng 4 2017

Điều kiện cần và đủ của tam giác ABC vuông tại A là các cạnh của nó thỏa mãn hệ thức :

a2 + b2 = c2

(a, b, c độ dài các cạnh theo thứ tự đối diện các đỉnh A, B, C)