K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2022

Xin vui lòng cho biết vế sau của dấu bằng ạ ạ ạ !!!!

NV
27 tháng 2 2021

\(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

\(=\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\)

\(=\dfrac{a^2+b^2+c^2}{2abc}\) (đpcm)

2 tháng 3 2021

a2 = b2 + c2 - 2bc.cosA

b2 = a2 + c2 - 2ac.cosB

c2 = a2 + b2 - 2ab.cosC

⇒ a2 + b2 + c2 = 2bc.cosA + 2ac.cosB + 2ab.cosC

⇒ VT =  \(\dfrac{2bc.cosA}{2abc}+\dfrac{2ab.cosC}{2abc}+\dfrac{2ac.cosB}{2abc}\)

⇒ VT = \(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

27 tháng 4 2021

TL:

sinA+sinB+sinC=1-cosA+cosB+cosC => Tam giác ABC Vuông tại A

27 tháng 4 2021

Vế trái = sinA + sinB + sinC

= 2sin(A + B)/2.cos(A - B)/2 + 2sinC/2.cosC/2

= 2cosC/2.cos(A - B)/2 + 2sinC/2.cosC/2

= 2cosC/2[cos(A - B)/2 + sinC/2]

=2.cosC/2.[cos(A - B)/2 + cos(A + B)/2]

= 4.cosC/2.cosB/2.cosA/2

Vế phải = 1 - cosA + cosB + cosC

= 2sin²A/2 + 2cos(B + C)/2.cos(B - C)/2

= 2.sinA/2[sinA/2 + cos(B - C)/2] (vì cos(B + C)/2 = sinA/2)

= 2.sinA/2[cos(B + C)/2 + cos(B - C)/2

= 4.sinA/2.cosB/2.cosC/2

Vậy sinA + sinB + sinC = 1 - cosA + cosB + cosC

<=> cosA/2.cosB/2.cosC/2 = sinA/2.cosB/2.cosC/2

<=> cosB/2.cosC/2(sinA/2 - cosA/2) = 0

mà cosB/2 ≠ 0 và cosC/2 ≠ 0

=> sinA/2 = cosA/2

<=> A/2 = 45o

<=> A = 90o

tam giác ABC vuông tại A

30 tháng 3 2017

Định lí:

Trong một tam giác bất kì, bình phương một cạnh bằng tổng các bình phương của hai cạnh còn lại trừ đi hai lần tích của hai cạnh đó nhân với cosin của góc xen giữa chúng.

Ta có các hệ thức sau: a2 = b2 + c2 - 2bc.cosA (1)

b2 = a2 + c2 - 2bc.cosB (2)

c2 = a2 + b2 - 2bc.cosC (3)

Hệ quả: Từ định lí cosin suy ra:

cosA = cosB =

cosC =

10 tháng 5 2019

Định lí Cô sin : Tam giác ABC có AB = c, BC = a, AC = c thì ta có :

Giải bài 5 trang 62 sgk Hình học 10 | Để học tốt Toán 10

NV
15 tháng 6 2020

\(cosA+cosB-cosC=2cos\frac{A+B}{2}.cos\frac{A-B}{2}+2sin^2\frac{C}{2}-1\)

\(=2sin\frac{C}{2}.cos\frac{A-B}{2}+2sin^2\frac{C}{2}-1\)

\(=2sin\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)-1\)

\(=2sin\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)-1\)

\(=4cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}-1\)

13 tháng 11 2019

Chọn B.

Ta có: góc A tù nên  cos A < 0 ; sinA > 0 ; tan A < 0 ; cot A < 0

Do góc A tù nên góc B và C là các góc nhọn có các giá trị lượng giác đều dương

Do đó: M > 0 ; N > 0 ; P > 0 và Q < 0.