K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Định lí:

Trong một tam giác bất kì, bình phương một cạnh bằng tổng các bình phương của hai cạnh còn lại trừ đi hai lần tích của hai cạnh đó nhân với cosin của góc xen giữa chúng.

Ta có các hệ thức sau: a2 = b2 + c2 - 2bc.cosA (1)

b2 = a2 + c2 - 2bc.cosB (2)

c2 = a2 + b2 - 2bc.cosC (3)

Hệ quả: Từ định lí cosin suy ra:

cosA = cosB =

cosC =

10 tháng 5 2019

Định lí Cô sin : Tam giác ABC có AB = c, BC = a, AC = c thì ta có :

Giải bài 5 trang 62 sgk Hình học 10 | Để học tốt Toán 10

27 tháng 4 2021

TL:

sinA+sinB+sinC=1-cosA+cosB+cosC => Tam giác ABC Vuông tại A

27 tháng 4 2021

Vế trái = sinA + sinB + sinC

= 2sin(A + B)/2.cos(A - B)/2 + 2sinC/2.cosC/2

= 2cosC/2.cos(A - B)/2 + 2sinC/2.cosC/2

= 2cosC/2[cos(A - B)/2 + sinC/2]

=2.cosC/2.[cos(A - B)/2 + cos(A + B)/2]

= 4.cosC/2.cosB/2.cosA/2

Vế phải = 1 - cosA + cosB + cosC

= 2sin²A/2 + 2cos(B + C)/2.cos(B - C)/2

= 2.sinA/2[sinA/2 + cos(B - C)/2] (vì cos(B + C)/2 = sinA/2)

= 2.sinA/2[cos(B + C)/2 + cos(B - C)/2

= 4.sinA/2.cosB/2.cosC/2

Vậy sinA + sinB + sinC = 1 - cosA + cosB + cosC

<=> cosA/2.cosB/2.cosC/2 = sinA/2.cosB/2.cosC/2

<=> cosB/2.cosC/2(sinA/2 - cosA/2) = 0

mà cosB/2 ≠ 0 và cosC/2 ≠ 0

=> sinA/2 = cosA/2

<=> A/2 = 45o

<=> A = 90o

tam giác ABC vuông tại A

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Định lí cosin: Trong tam giác ABC

\(\begin{array}{l}{a^2} = {b^2} + {c^2} - \,2b\,c.\cos A\quad (1)\\{b^2} = {a^2} + {c^2} - \,2a\,c.\cos B\quad (2)\\{c^2} = {b^2} + {a^2} - \,2ab.\cos C\quad (3)\end{array}\)

Ta có \((1) \Leftrightarrow 2bc\cos A = {b^2} + {c^2} - {a^2}\, \Leftrightarrow \cos A = \frac{{{b^2} + {c^2} - {a^2}\,}}{{2b\,c}}.\)

Tương tự từ (2) và (3) ta suy ra \(\cos B = \frac{{{a^2} + {c^2} - {b^2}\,}}{{2a\,c}}\); \(\cos C = \frac{{{b^2} + {a^2} - {c^2}\,}}{{2b\,a}}\)

13 tháng 11 2019

Chọn B.

Ta có: góc A tù nên  cos A < 0 ; sinA > 0 ; tan A < 0 ; cot A < 0

Do góc A tù nên góc B và C là các góc nhọn có các giá trị lượng giác đều dương

Do đó: M > 0 ; N > 0 ; P > 0 và Q < 0.

16 tháng 4 2019

P ⇒ Q: “ Nếu tam giác ABC có hai góc bằng 60o thì ABC là một tam giác đều”

Giả thiết: “Tam giác ABC có hai góc bằng 60o ”

Kết luận: “ABC là một tam giác đều”

Phát biểu lại định lí này dưới dạng điều kiện cần: “ABC là một tam giác đều là điều kiện cần để tam giác ABC có hai góc bằng 60o

Phát biểu lại định lí này dưới dạng điều kiện đủ : “Tam giác ABC có hai góc bằng 60o là điều kiện đủ để ABC là tam giác đều”

10 tháng 10 2022

C

 

NV
27 tháng 2 2021

\(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

\(=\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\)

\(=\dfrac{a^2+b^2+c^2}{2abc}\) (đpcm)

2 tháng 3 2021

a2 = b2 + c2 - 2bc.cosA

b2 = a2 + c2 - 2ac.cosB

c2 = a2 + b2 - 2ab.cosC

⇒ a2 + b2 + c2 = 2bc.cosA + 2ac.cosB + 2ab.cosC

⇒ VT =  \(\dfrac{2bc.cosA}{2abc}+\dfrac{2ab.cosC}{2abc}+\dfrac{2ac.cosB}{2abc}\)

⇒ VT = \(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

8 tháng 6 2021

Ta có : \(cos2A+2\sqrt{2}\left(cosB+cosC\right)=3\)

\(\Leftrightarrow1-2sin^2A+2\sqrt{2}.2.cos\left(\dfrac{B+C}{2}\right).cos\left(\dfrac{B-C}{2}\right)=3\)

\(\Leftrightarrow2sin^2A-4\sqrt{2}.sin\dfrac{A}{2}.cos\left(\dfrac{B-C}{2}\right)+2=0\)

\(\Leftrightarrow sin^2A-2\sqrt{2}.sin\dfrac{A}{2}.cos\left(\dfrac{B-C}{2}\right)+1=0\) 

\(\Delta\) ABC không tù nên \(cos\dfrac{A}{2}\ge cos45^o=\dfrac{\sqrt{2}}{2}\) 

Suy ra : VT \(\ge sin^2A-4.cos\dfrac{A}{2}.sin\dfrac{A}{2}.cos\left(\dfrac{B-C}{2}\right)+1=K\)

Thấy : \(K=sin^2A-2.sinA.cos\left(\dfrac{B-C}{2}\right)+cos\left(\dfrac{B-C}{2}\right)^2+1-cos\left(\dfrac{B-C}{2}\right)^2\)

\(=\left(sinA-cos\left(\dfrac{B-C}{2}\right)\right)^2+sin^2\left(\dfrac{B-C}{2}\right)\ge0\) 

Suy ra : \(VT\ge K\ge0=VP\)

 Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}sinA=cos\left(\dfrac{B-C}{2}\right)\\sin\left(\dfrac{B-C}{2}\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sinA=cos0^o=1\\B=C\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}A=\dfrac{\pi}{2}\\B=C=\dfrac{\pi}{4}\end{matrix}\right.\)  ( do \(A+B+C=\pi\) ) 

Vậy ...