Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{5x^2}{x^2}-\dfrac{x}{x^2}+\dfrac{1}{x^2}=\dfrac{1}{x^2}-\dfrac{1}{x}+5=\left(\dfrac{1}{x^2}-\dfrac{1}{x}+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(\dfrac{1}{x}-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
\(A_{min}=\dfrac{19}{4}\) khi \(\dfrac{1}{x}=\dfrac{1}{2}\Rightarrow x=2\)
C = - 5 - (x - 1)(x + 2)
Tìm giá trị lớn nhất của biểu thức trên.
Các bạn giúp mình với ạ.Mình cảm ơn!
Ta có: \(C=-5-\left(x+2\right)\left(x-1\right)\)
\(=-5-x^2-x+2\)
\(=-x^2-x-3\)
\(=-\left(x^2+x+3\right)\)
\(=-\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{11}{4}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
(x^2+y^2-12y-12x+36)+(5y^2-10y+5)+4=(x-y-6)^2+5(y-1)^2+4>=4
GTNN A=4
khi y=1
x=7
\(a,x^2-4x+4y^2+12y+13\)
Ta có :
\(A=x^2-4x+4y^2+12y+13\)
\(=\left(x^2-4x+2^2\right)+\left(\left(2y\right)^2+12y+3^2\right)\)
\(=\left(x-2\right)^2+\left(2y+3\right)^2\)
Vì \(\left(x-2\right)^2\ge0\)\(\forall x\in R\)
\(\left(2y+3\right)^2\ge0\) \(\forall x\in R\)
\(\Rightarrow A=x^2-4x+4y^2+12y+13\ge0\) \(\forall x\in R\)
Dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2=0\\2y+3=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{3}{2}\end{cases}}\)
Vậy \(min_A=0\) khi \(x=1\) và \(y=-\frac{3}{2}\)
Lời giải:
$A=5x^2+y^2+4xy-2x-2y+2020$
$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$
$=(2x+y)^2-2(2x+y)+x^2+2x+2020$
$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$
$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$
Hay $x=-1; y=3$
\(M=\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(M\ge\left|x-1+3-x\right|=\left|2\right|=2\)
Dấu " = " xảy ra khi \(x-1\ge0;3-x\ge0\)
\(\Rightarrow x\ge1;x\le3\)
\(\Rightarrow1\le x\le3\)
Vậy \(MIN_M=2\) khi \(1\le x\le3\)
\(A=5x^2+y^2-4xy-2y+2022=\left(4x^2-4xy+y^2\right)+x^2-2y+2022\)
\(A=\left(2x-y\right)^2+x^2-2y+2022\)
Ta thấy \(\left(2x-y\right)^2\ge0;x^2\ge0\)
-2y mang dấu trừ nên để A đạt GTNN thì y=0
\(\Rightarrow A\ge0+0-0+2022=2022\)
Vậy \(A_{min}=2022\) khi x=y=0