K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2021

ĐK: `-x^4-2 >=0 <=>-(x^4+2) >=0 <=> x^4+2 <=0`

`x^4 >=0 <=>x^4+2>=2 >0 forallx`

Là "`-x^4`" chứ không phải "`(-x)^4`" ạ.

23 tháng 7 2021

Thế điều kiện để nó có nghĩa là gì bạn 

NV
13 tháng 3 2020

a/ ĐKXĐ: \(x\ge0;x\ne4\)

\(P=\frac{\left(2+\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}-\frac{\left(2-\sqrt{x}\right)^2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\frac{4}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}=\frac{8\sqrt{x}+4}{4-x}\)

\(P=2\Leftrightarrow\frac{8\sqrt{x}+4}{4-x}=2\)

\(\Leftrightarrow4\sqrt{x}+2=4-x\)

\(\Leftrightarrow x+4\sqrt{x}-2=0\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{6}-2\\\sqrt{x}=-\sqrt{6}-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=10-4\sqrt{6}\)

Câu c đề thiếu

12 tháng 8 2018

\(1;2.A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\left(x\ge0;x\ne1\right)\)

\(3.A< -1\Leftrightarrow2\sqrt{x}-1< -1\)

\(\Leftrightarrow2\sqrt{x}< 0\) ( Vô lý )

KL : Vậy , không có giá trị nào cua x để \(A< -1\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)

\(=\sqrt{x}-1+\sqrt{x}\)

\(=2\sqrt{x}-1\)

5 tháng 8 2018

a) điều kiện \(x;y\ge0\) ; \(x\ne y\)

b) ta có : \(A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow A=\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)=0\)

5 tháng 8 2018

\(a.ĐKXĐ:\left\{{}\begin{matrix}x\ne y\\x;y>0\end{matrix}\right.\)

\(b.A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\dfrac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\sqrt{x}-\sqrt{y}=\sqrt{x}+\sqrt{y}-\sqrt{x}-\sqrt{y}=0\)