Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: `-x^4-2 >=0 <=>-(x^4+2) >=0 <=> x^4+2 <=0`
`x^4 >=0 <=>x^4+2>=2 >0 forallx`
Là "`-x^4`" chứ không phải "`(-x)^4`" ạ.
a/ ĐKXĐ: \(x\ge0;x\ne4\)
\(P=\frac{\left(2+\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}-\frac{\left(2-\sqrt{x}\right)^2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\frac{4}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}=\frac{8\sqrt{x}+4}{4-x}\)
\(P=2\Leftrightarrow\frac{8\sqrt{x}+4}{4-x}=2\)
\(\Leftrightarrow4\sqrt{x}+2=4-x\)
\(\Leftrightarrow x+4\sqrt{x}-2=0\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{6}-2\\\sqrt{x}=-\sqrt{6}-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=10-4\sqrt{6}\)
Câu c đề thiếu
\(1;2.A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\left(x\ge0;x\ne1\right)\)
\(3.A< -1\Leftrightarrow2\sqrt{x}-1< -1\)
\(\Leftrightarrow2\sqrt{x}< 0\) ( Vô lý )
KL : Vậy , không có giá trị nào cua x để \(A< -1\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}\)
\(=2\sqrt{x}-1\)
a) điều kiện \(x;y\ge0\) ; \(x\ne y\)
b) ta có : \(A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\)
\(\Leftrightarrow A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)
\(\Leftrightarrow A=\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)=0\)
\(a.ĐKXĐ:\left\{{}\begin{matrix}x\ne y\\x;y>0\end{matrix}\right.\)
\(b.A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\dfrac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\sqrt{x}-\sqrt{y}=\sqrt{x}+\sqrt{y}-\sqrt{x}-\sqrt{y}=0\)