K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2022

Vì \(ab>0\) nên a và b cùng dấu và khác 0.

Ta có: \(\dfrac{1}{b}-\dfrac{1}{a}=\dfrac{a-b}{ab}>0\)

vì a>b nên a - b >0, ab > 0.

Do đó: \(\dfrac{1}{b}>\dfrac{1}{a}\) đpcm

8 tháng 9 2022

You can learn the difficult concept to understand from Solvemate. This is a education service for using technology to adapt in order to create mathematical problems based on the learning needs of students.
Math mate in your pocket. https://intro.solve-mate.com/

2 tháng 8 2017

thiếu đề

a: Khi x=16 thì \(A=\dfrac{4+1}{4-1}=\dfrac{5}{3}\)

b: \(P=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6-12}{x-4}=\dfrac{x+\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=1+\dfrac{3}{\sqrt{x}-2}\)

Để P lớn nhất thì căn x-2=1

=>căn x=3

=>x=9

14 tháng 4 2018

\(\frac{a^2+b^2}{a-b}=\frac{a^2+b^2-2ab+2}{a-b}=\frac{\left(a-b\right)^2+2}{a-b}=\left(a-b\right)+\frac{2}{a-b}\)

áp dụng bất đẳng thức côsi cho hai số dương

\(\left(a-b\right)+\frac{2}{a-b}\ge2\sqrt{\frac{\left(a-b\right)2}{a-b}}=2\sqrt{2}\)

14 tháng 4 2018

yim yim sao lại a2 + b 2 - 2ab -2 zậy bn mik ko hiểu đoạn này cho lắm

14 tháng 10 2016

\(\frac{\left(a^2+b^2\right)^2}{\left(a-b\right)^2}=\frac{\left(a^2+b^2\right)^2}{a^2+b^2-2ab}=\frac{x^2}{x-2}\) với \(x=a^2+b^2\)

Xét \(x^2-8\left(x-2\right)=x^2-8x+16=\left(x-4\right)^2\ge0\)

\(\Rightarrow x^2\ge8\left(x-2\right)\Leftrightarrow\frac{x^2}{x-2}\ge8\)hay \(\frac{\left(a^2+b^2\right)^2}{\left(a^2+b^2-2ab\right)}\ge8\Leftrightarrow\frac{\left(a^2+b^2\right)^2}{\left(a-b\right)^2}\ge8\Rightarrow\frac{a^2+b^2}{a-b}\ge2\sqrt{2}\)

11 tháng 7 2020

bài này khó quá

29 tháng 6 2018

Đặt a+b=x;c+d=ya+b=x;c+d=y ta cần chứng minh :xy+4≥2(x+y)⇔(x−2)(y−2)≥0xy+4≥2(x+y)⇔(x−2)(y−2)≥0

Mặt khác ta luôn có x=a+b≥2√ab=2;y=c+d≥2√cd=2x=a+b≥2ab=2;y=c+d≥2cd=2

Như vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=d=1

NV
2 tháng 4 2020

\(-\frac{1}{c}=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\Rightarrow c=\frac{-ab}{a+b}\)

\(\sqrt{a+c}+\sqrt{b+c}=\sqrt{a-\frac{ab}{a+b}}+\sqrt{b-\frac{ab}{a+b}}\)

\(=\sqrt{\frac{a^2}{a+b}}+\sqrt{\frac{b^2}{a+b}}=\frac{a+b}{\sqrt{a+b}}=\sqrt{a+b}\) (đpcm)