
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


nếu 3n+1 chia hết cho 10 thì phải cộng thêm 1 số chia hết cho 10 mà 4 ko chia hết cho 10
hay giả sử 3^n tận cùng là 5 thì mới +5 chia hết cho 10
mà 3n tận cùng là 3,9,7,1
nên ko thể có 3^n+4+1 chia hết cho 10

2n+7 là bội của n-3
=> 2n+7 chia hết cho n-3
=> 2n-6+13 chia hết cho n-3
=> 2(n-3)+13 chia hết cho n-3
=> 13 chia hết cho n-3
=> n-3 thuộc Ư(13)={-1,-13,1,13}
n-3 | -1 | -13 | 1 | 13 |
n | 2 | -10 | 4 | 16 |
Vậy n thuộc {-10,2,4,16}

a) n={0;±2;4}n={0;±2;4}
b) n={−9;±1;0;2;4;5;6;7;16}n={−9;±1;0;2;4;5;6;7;16}
c) n={−13;−3;−1;9}n={−13;−3;−1;9}
d) Không có n nguyên thỏa mãn
Giải thích các bước giải:
a) 3n3n ⋮⋮ n−1n−1
⇒3(n−1)+3⇒3(n−1)+3 ⋮⋮ n−1n−1
Do 3(n−1)3(n−1) ⋮⋮ n−1⇒3n−1⇒3 ⋮⋮ n−1n−1
⇒n−1∈Ư(3)={±1;±3}⇒n−1∈Ư(3)={±1;±3}
Với n−1=−1⇒n=0n−1=−1⇒n=0
n−1=1⇒n=2n−1=1⇒n=2
n−1=−3⇒n=−2n−1=−3⇒n=−2
n−1=3⇒n=4n−1=3⇒n=4
Vậy n={0;±2;4}n={0;±2;4}
b) 2n+72n+7 là bội của n−3⇒2n+7n−3⇒2n+7 ⋮⋮ n−3n−3
⇒2(n−3)+12⇒2(n−3)+12 ⋮⋮ n−3n−3
Do 2(n−3)2(n−3) ⋮⋮ n−3⇒12n−3⇒12 ⋮⋮ n−3n−3
⇒n−3∈Ư(12)={±1;±2;±3;±4;±12}⇒n−3∈Ư(12)={±1;±2;±3;±4;±12}
Ta có bảng sau:
n-3 -12 -4 -3 -2 -1 1 2 3 4 12
n -9 -1 0 1 2 4 5 6 7 15
Vậy n={−9;±1;0;2;4;5;6;7;16}n={−9;±1;0;2;4;5;6;7;16}
c) n+2n+2 là ước cửa 5n−1⇒5n−15n−1⇒5n−1 ⋮⋮ n+2n+2
5(n+2)−115(n+2)−11 ⋮⋮ n+2n+2
Do 5(n+2)5(n+2) ⋮⋮ n+2⇒11n+2⇒11 ⋮⋮ n+2n+2
⇒n+2∈Ư(11)={±1;±11}⇒n+2∈Ư(11)={±1;±11}
Ta có bảng sau:
n+2 -11 -1 1 11
n -13 -3 -1 9
Vậy n={−13;−3;−1;9}n={−13;−3;−1;9}
d) n−3n−3 là bội của n2+4n2+4
⇒n−3⇒n−3 ⋮⋮ n2+4n2+4
(n−3)(n+3)(n−3)(n+3) ⋮⋮ n2+4n2+4
n2−9n2−9 ⋮⋮ n2+4n2+4
n2+4−13n2+4−13 ⋮⋮ n2+4n2+4
Do n2+4n2+4 ⋮⋮ n2+4n2+4 nên 1313 ⋮⋮ n2+4n2+4
⇒n2+4∈Ư(13)={±1;±13}⇒n2+4∈Ư(13)={±1;±13}
do n2+4≥4n2+4≥4 nên ta chỉ xét n2+4={13}n2+4={13}
Với n2+4=13⇒n2=17⇒n=±√17n2+4=13⇒n2=17⇒n=±17 (loại)(do không là số nguyên)

\(3^n+1⋮10\)
\(\Rightarrow3^n=\left(...9\right)\)
\(3^{n+4}=3^n.81=\left(..9\right).81=\left(...9\right)\Rightarrow3^{n+4}+1=\left(...0\right)⋮10\text{(đpcm)}\)
\(3^{n+1}\)là bội của 10
=>\(3^{n+1}⋮10\)10
mà 1 chia 10 dư 1
=>\(3^n\)chia 10 dư 9
- Xét \(3^{n+4}+1=3^n.3^4+1=81.3^n+1\)
Có 81 chia 10 dư 1
\(3^n\)chia 10 dư 9
\(\Rightarrow81.3^n\)chia 10 dư 1.9
mà 1 chia 10 dư 1
\(\Rightarrow81.3^n+1⋮10\) 1 chia hết cho 10
\(\Leftrightarrow3^{n+4}+1⋮10\)chia hết cho 10
\(\Rightarrow3^{n+4}+1\) là bội của 10
=> Đpcm

bạn lập luận 3^n+ 1 và 3^n+4 +1 cùng 1 tận cùng rồi suy ra nếu 3^n +1 là B(10) thì 3^n+4 +1 cùng là B(10)

viết rõ đầu bài bạn nhé 3n+1 không bao giờ bội của 10. vì nó chỉ có thể mang đuôi 1, 3, 9

3n + 1 là bội của 10
=> 3n + 1 chia hết cho 10
mà 1 chia 10 dư 1
=> 3n chia 10 dư 9
- Xét 3n+4 + 1
= 3n.34 + 1
= 81.3n + 1
Có 81 chia 10 dư 1
3n chia 10 dư 9
=> 81.3n chia 10 dư 1.9
=> 81.3n chia 10 dư 9
mà 1 chia 10 dư 1
=> 81.3n + 1 chia hết cho 10
=> 3n+4 + 1 chia hết cho 10
=> 3n+4 + 1 là bội của 10
=> Đpcm
Nếu 3n +1 là bội của 10 thì 3n +1 có tận cùng là 0 => 3n có tận cùng là 9
Mà : 3n+4 +1 = 3n . 34 = .....9 . 81 + 1 = .....9 +1 = ......0
hay 3n+4 có tận cùng là 0 => 3n+4 là bội của 10
Vậy 3n+4 là bội của 10.

a) 6 là bội của n+1
=> 6 ⋮ n+1
=> n+1 thuộc Ư(6)={1;2;3;-1;-2;-3}
Lập bảng tìm n :
n+1 | 1 | 2 | 3 | -1 | -2 | -3 |
n | 0 | 1 | 2 | -2 | -3 | -4 |
Vậy n thuộc { 0;1;2;-2;-3;-4}
b) Xét n+1 là bội của 6
=> n+1 thuộc { 0; 6; 12; 18; ... }
=> n thuộc { -1; 5; 11; 17; .... }
Nhớ xét các t/h âm nữa nhé! Nhưng vì bội vô hạn nên chỉ cần thêm 1 - 2 số âm thôi nha ^^
c) 2n+3 là bội của n+1
=> 2n+3 ⋮ n+1
=> 2(n+1) + 1 ⋮ n+1
ta có 2(n+1) ⋮ n+1
=> 1 ⋮ n+1
=> n+1 thuộc Ư(1) = { 1; -1 }
=> n thuộc { 0; -2 }
d) tương tự
a) 6 là bội của n+1 => n+1 là ước của 6
Ư(6)= 1;2;3;6. Ta có bảng: ( bạn tự vẽ bảng nhé )
n+1 1 2 3 6
n 0 1 2 5
Vậy n = 0; 1; 2; 5
b) B(6)= 0;6;12;18;24;30;...... Ta có bảng:
n+1 0 12 18 24 30
n 0 11 17 23 29
Vậy n = 0;5;11;17;23;29;.....
c) ta có bảng:
n 0 1 2 3 4 5 6 7
2n+3 3 5 7 9 11 13 15 17
n+1 1 2 3 4 5 6 7 8
Vậy n = 0.