K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

Đáp án là B

Các viên bi lấy ra có đủ cả 2  màu nên ta có các trường hợp:

Số bi trắng

Số bi xanh

Số cách chọn

1

3

              C 6 1 . C 5 3

2

3

              C 6 2 . C 5 2

3

1

              C 6 3 . C 5 1

Vậy có tất cả  cách lấy thỏa mãn yêu cầu bài toán.

C 6 1 . C 5 3 + C 6 2 . C 5 2 + C 6 3 . C 5 1 =310

 

 

19 tháng 11 2018

Chọn B

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Vì hai túi là khác nhau nên biến cố lấy một viên bi mỗi túi là độc lập.

Gọi biến cố A: “Hai viên bi được lấy có cùng màu xanh”, biến cố B: “Hai viên bi được lấy có cùng màu đỏ”, biến cố C: “Hai viên bi được lấy có cùng màu”

a) Xác suất lấy được viên bi màu xanh từ túi I là \(\frac{3}{{10}}\)

Xác suất lấy được viên bi màu xanh từ túi II là \(\frac{{10}}{{16}} = \frac{5}{8}\)

Xác suất lấy được hai viên bi cùng màu xanh là \(\frac{3}{{10}}.\frac{5}{8} = \frac{3}{{16}}\)

b) Xác suất lấy được viên bi màu đỏ từ túi I là \(\frac{7}{{10}}\)

Xác suất lấy được viên bi màu đỏ từ túi II là \(\frac{6}{{16}} = \frac{3}{8}\)

Xác suất lấy được hai viên bi cùng màu đỏ là \(\frac{7}{{10}}.\frac{3}{8} = \frac{{21}}{{80}}\)

c) Ta có \(C = A \cup B\) mà A và B xung khắc nên

\(P\left( C \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) = \frac{3}{{16}} + \frac{{21}}{{80}} = \frac{9}{{20}}\)

Vậy xác suất để hai viên bi được lấy có cùng màu là \(\frac{9}{{20}}.\)

d) Gọi biến cố D: “Hai viên bi được lấy không cùng màu”

Khi đó \(\overline D  = C\)

\( \Rightarrow P\left( D \right) = 1 - P\left( {\overline D } \right) = 1 - P\left( C \right) = 1 - \frac{9}{{20}} = \frac{{11}}{{20}}\)

Vậy xác suất để hai viên bi được lấy không cùng màu là \(\frac{{11}}{{20}}.\)

a: n(omega)=4+3+3+5=15

n(xanh)=4+3=7

=>P=7/15

b: P=7/15*4/7=4/15

NV
21 tháng 12 2022

a.

Có \(C_{17}^5\) cách lấy 5 viên bi tùy ý từ 17 viên bi

b.

Lấy 1 bi trắng từ 7 bi trắng, 2 bi xanh từ 4 bi xanh và 2 bi đỏ từ 6 bi đỏ

Số cách lấy là: \(C_7^1.C_4^2.C_6^2\) cách

c.

Các trường hợp thỏa mãn: 1 trắng 1 đỏ 3 xanh, 1 trắng 2 đỏ 2 xanh, 1 trắng 3 đỏ 1 xanh, 2 trắng 1 đỏ 2 xanh, 2 trắng 2 đỏ 1 xanh

Số cách lấy là:

\(C_7^1C_6^1C_4^3+C_7^1C_6^2C_4^2+C_7^1C_6^3C_4^1+C_7^2C_6^1C_4^2+C_7^2C_6^2C_4^1\) cách

Thầy có thể giải thích cụ thể hơn về câu a được không thưa thầy?

1 tháng 1 2020

Các trường hợp xảy ra theo yêu cầu đề:

Trường hơp 1: 2 xanh, 2 vàng, 2 đỏ, có:  cách.

Trường hợp 2: 2 xanh,1 vàng, 3 đỏ, có:  cách.

Vậy có :  cách.

Chọn D.

23 tháng 5 2017

Sử dụng phương pháp gián tiếp:

Lấy ra 9 viên bi trong 15 viên bi bất kỳ, có    C 15 9 cách.

Trường hợp 1: lấy 9 viên bi chỉ có 2 màu là xanh và đỏ, có C 11 9   cách.

Trường hợp 2: lấy 9 viên bi chỉ có 2 màu là xanh và vàng, có C 9 9   cách.

Trường hợp 3: lấy ra 9 viên bi chỉ có màu đỏ và vàng, có C 10 9   cách.

Vậy có : C 15 9 - ( C 11 9 + C 9 9 + C 10 9 ) = 4984 cách.

Chọn C.

9 tháng 9 2018

Chọn D

Cách 1:

Số phần tử của không gian mẫu: .

Gọi A là biến cố: “lấy ra 4 viên bi có đủ ba màu”

Ta xét các khả năng của biến cố A: 

TH1: Lấy được 1 bi trắng, 1 bi xanh và 2 bi vàng, trường hợp này có  (cách).

TH2: Lấy được 1 bi trắng, 2 bi xanh và 1 bi vàng, trường hợp này có  (cách).

TH3: Lấy được 2 bi trắng, 1 bi xanh và 1 bi vàng, trường hợp này có  (cách).

Số cách lấy 4 viên bi có đủ cả ba màu là: 

Xác suất cần tìm là 

Cách 2:

Số phần tử của không gian mẫu:

Gọi A là biến cố: “lấy ra 4 viên bi không có đủ ba màu” .

Ta có:

 

Xác suất của biến cố A là: 

 

Vậy xác suất cần tìm là: .