K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Trần Thanh Phương, Nguyễn Ngọc Lộc , @Nguyễn Việt Lâm, @Akai Haruma, Phạm Thị Diệu Huyền, Phạm Lan Hương

Cần gấp lắm ạ!!! mn giúp e vs, thanks!

14 tháng 2 2020

câu 2 sửa đề tí ạ: OO' cắt 2 đg tròn tại C,E,D,F sao cho...

8 tháng 4 2020

*hinh tu ve*

Xét phép vị tự quay S có tâm B, góc quay (BM,BA) \(\left(mol\pi\right)\)và tỉ số \(k=\frac{BM}{BA}\)

Ta có S: \(M\rightarrow A,C\rightarrow H\in BN\)

Khi đó: (HN,HC) = (AB,AM) = ((AN,AC) \(\left(mol\pi\right)\)

Nên A,N,C, H đồng viên. Theo định lý Ptolemy ta có: 

HB.AC=AC(BH+NH)=AC.BH+AN.CH+AH.CN

Lại theo tính chất của phép tự vị quay thì \(k=\frac{BA}{BM}=\frac{HC}{AM}=\frac{HA}{CM}=\frac{HB}{BC}\)

\(\Rightarrow HC=\frac{AM\cdot AB}{BM};BH=\frac{AB\cdot BC}{BM};HA=\frac{AB\cdot MC}{BM}\)

\(\Rightarrow\frac{AB\cdot BC}{BM}\cdot AC=AC\cdot BN+\frac{AM\cdot AB}{BM}\cdot AN+\frac{AB\cdot MC}{BM}\cdot CN\)

hay \(\frac{AM\cdot AN}{AB\cdot AC}+\frac{BM\cdot BN}{BC\cdot BA}+\frac{CM\cdot CN}{CA\cdot CB}=1\)

10 tháng 10 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng i: Đoạn thẳng [F, A] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [A, E] Đoạn thẳng m: Đoạn thẳng [E, M] Đoạn thẳng n: Đoạn thẳng [D, F] Đoạn thẳng p: Đoạn thẳng [G, B] Đoạn thẳng q: Đoạn thẳng [E, C] O = (2.08, 1.84) O = (2.08, 1.84) O = (2.08, 1.84) A = (12.48, 2.58) A = (12.48, 2.58) A = (12.48, 2.58) Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm E: Giao điểm đường của c, g Điểm E: Giao điểm đường của c, g Điểm E: Giao điểm đường của c, g Điểm F: Giao điểm đường của c, h Điểm F: Giao điểm đường của c, h Điểm F: Giao điểm đường của c, h Điểm G: Giao điểm đường của c, i Điểm G: Giao điểm đường của c, i Điểm G: Giao điểm đường của c, i Điểm M: Giao điểm đường của f, j Điểm M: Giao điểm đường của f, j Điểm M: Giao điểm đường của f, j

a)  Do DF // AC nên \(\widehat{MAG}=\widehat{GFD}\)  (Hai góc so le trong) . 

Lại có \(\widehat{GFD}=\widehat{GED}\)   (Hai góc nội tiếp cùng chắn cung GD)

Nên \(\widehat{MAG}=\widehat{GED}\)

Xét tam giác AMG và tam giác EMA có:

\(\widehat{MAG}=\widehat{MEA}\) (cmt)

Góc M chung

Vậy nên \(\Delta AMG\sim\Delta EMA\left(g-g\right)\Rightarrow\frac{MA}{ME}=\frac{MG}{MA}\Rightarrow MA^2=MG.ME\) 

b) Do tứ giác ECBG nội tiếp nên \(\widehat{BCE}=\widehat{BGM}\) (Góc ngoài tại đỉnh đối của tứ giác nội tiếp)

Vậy xét tam giác MGB và MCE có:

\(\widehat{BGM}=\widehat{ECM}\left(cmt\right)\)

Góc M chung

Vậy nên \(\Delta MGB\sim\Delta MCE\left(g-g\right)\)

c) Theo câu a, ta có \(AM^2=MG.ME\)

Theo câu b, \(\Delta MGB\sim\Delta MCE\Rightarrow\frac{MG}{MC}=\frac{MB}{ME}\Rightarrow MG.ME=MB.MC\)

Vậy nên \(MA^2=MB.MC\)

Suy ra \(MA^2+MA.MC=MB.MC+MA.MC\)

\(\Leftrightarrow MA\left(MA+MC\right)=MC\left(MB+MA\right)\)

\(\Leftrightarrow MA.AC=MC.AB\)

\(\Leftrightarrow AB\left(AC-AM\right)=MA.AC\)

\(\Leftrightarrow AB.AC-AB.AM=AM.AC\)

\(\Leftrightarrow AB.AC=AM\left(AB+AC\right)\)

\(\Leftrightarrow\frac{1}{AM}=\frac{AB+AC}{AB.AC}\)

\(\Leftrightarrow\frac{1}{AM}=\frac{1}{AB}+\frac{1}{AC}\left(đpcm\right)\)

10 tháng 12 2019

ko biet

AH
Akai Haruma
Giáo viên
2 tháng 2 2017

Lời giải:

a) Thấy $BI,BJ$ là hai phân giác của hai góc kề bù nên \(BI\perp BJ\Rightarrow \angle IBJ=90^0\)

Tương tự \(\angle ICJ=90^0\). Do đó \(\angle IBJ+\angle ICJ=180^0\) nên $BICJ$ nội tiếp

b)

Để ý \(\angle EBI=\angle \frac{A}{2}+\angle \frac{B}{2}=\angle BIE\Rightarrow \triangle BIE\) cân tại $E$ nên $IE=BE$

Khi đó\((\frac{IE}{ME})^2=(\frac{BE}{ME})^2=\frac{BM^2}{ME^2}+1=\cot ^2\frac{\angle EBC}{2}=1+\cot^2\frac{A}{2}=\frac{1}{\sin^2 \frac{A}{2}}(1)\)

Theo công thức bán kinh đường tròn bàng tiếp:

\((\frac{JA}{NJ})^2=(\frac{JA}{JK})^2=\frac{1}{\sin ^2\frac{A}{2}}(2)\)

Từ \((1),(2)\Rightarrow \frac{IE}{ME}=\frac{JA}{NJ}\). Kết hợp với \(\angle MEI=\angle NJI\Rightarrow \triangle MEI\sim \triangle NJA\)

\(\Rightarrow \angle EIM=\angle JAN\Rightarrow IM\parallel AN\) (đpcm)

c) Nhìn hình thức xấu quá, hên xui vậy

Ta có \(\triangle ICJ\sim \triangle BNJ\Rightarrow IC=\frac{CJ.BN}{NJ}\)

Tứ giác $NCKJ$ nội tiếp nên theo định lý Ptoleme \(NK=\frac{2NC.NJ}{CJ}\)

\(\Rightarrow IC.NK=2BN.NC\)

Biết rằng \(JK=r_A=p\tan\frac{A}{2}\rightarrow AK=p\rightarrow NC=CK=p-b\rightarrow BN=p-c\)

\(\rightarrow IC.NK=2(p-b)(p-c)\)

\(\left\{\begin{matrix} \frac{ID}{DA}=\frac{DM}{DN}=\frac{DE}{DJ}=\frac{IE}{AJ}\\ \frac{ID}{DA}=\frac{DM}{DN}=\frac{ME}{NJ}\end{matrix}\right.\Rightarrow \frac{ID^2}{DA^2}=\frac{IE^2-ME^2}{JA^2-NJ^2}=\frac{BM^2}{AK^2}=\frac{a^2}{4p^2}\Rightarrow\frac{ID}{DA}=\frac{a}{2p}\)

\(AK^2=p^2\). Mặt khác theo định lý hàm cos:

\(AN^2=AB^2+BN^2-2AB.BN\cos\angle ABC=c^2+(p-c)^2-2c(p-c)\cos\frac{A}{2}\)

Có đủ các dữ kiện rồi thì chỉ cần biến đổi đại số thôi

1 tháng 2 2017

Akai Haruma Nguyễn Huy Thắng Hoàng Lê Bảo Ngọc Trần Việt Linh Võ Đông Anh Tuấn Lê Nguyên Hạo ......................................................................................

10 tháng 8 2019

đoán đề là M thuộc BD hoặc M thuộc CD, nhưng M thuộc cái nào thì giải vẫn vậy thôi, do câu e) có liên quan nên đến đấy mới xét M, nhưng vẽ hình là M thuộc CD cho dễ nhìn nhé 

a) Có: \(\widehat{NAD}=90^0-\widehat{MAD}=90^0-\widehat{AEB}=90^0-\left(90^0-\widehat{EAB}\right)=\widehat{EAB}\)

Xét 2 tam giác vuông ADN và ABE có: AD=AB và ^NAD=^EAB => \(\Delta ADN=\Delta ABE\) (g-c-g) => \(AN=AE\)

Tam giác vuông AEN có AE=AN => AEN vuông cân tại A 

b) Hình chữ nhật ABCD có BD là đường chéo => \(\widehat{ADB}=\widehat{CDB}=45^0\)

Mà \(\widehat{CDB}=\widehat{ODN}\) ( đối đỉnh ) => \(\widehat{ADB}+\widehat{ODN}=90^0\)\(\Leftrightarrow\)\(\widehat{ADB}+\widehat{ODN}+\widehat{ADN}=180^0\)

=> B, D, O thẳng hàng 

c) Có: \(\Delta MDA~\Delta ADN\) ( do \(\widehat{NAD}=90^0-\widehat{MAD}=\widehat{AMD}\) và \(\widehat{ADN}=\widehat{MDA}=90^0\) ) 

=> \(\frac{AD}{AM}=\frac{DN}{AN}\)\(\Leftrightarrow\)\(\frac{AB}{AM}=\frac{DN}{AE}\)\(\Leftrightarrow\)\(\frac{AB^2}{AM^2}=\frac{DN^2}{AE^2}\)

=> \(\frac{AB^2}{AM^2}+\frac{AB^2}{AE^2}=\frac{DN^2}{AE^2}+\frac{AB^2}{AE^2}=\frac{DN^2+AD^2}{AE^2}=\frac{AN^2}{AE^2}=1\)

\(\Leftrightarrow\)\(\frac{1}{AM^2}+\frac{1}{AE^2}=\frac{1}{AB^2}\) ( đpcm ) 

d) Tam giác AEN vuông cân tại A nên có OA là đường trung tuyến nên OA cũng là đường cao => \(OA\perp NE\)

e) từ câu c) ta có: \(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)\(\Leftrightarrow\)\(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\ge2\sqrt{\frac{1}{AM^2.AE^2}}=\frac{2}{AM.AE}\)

Dấu "=" xảy ra khi M trùng với C(M thuộc CD) hoặc M là trung điểm của BD(M thuộc BD) (đã nói ở đầu bài) 

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
25 tháng 10 2017

a) Xét tam giác AEB và tam giác MAD có:

\(\widehat{ABE}=\widehat{MDA}\left(=90^o\right)\)

\(\widehat{AEB}=\widehat{MAD}\) (So le trong)

Vậy nên \(\Delta AEB\sim\Delta MAD\left(g-g\right)\Rightarrow\frac{AE}{MA}=\frac{BE}{DA}\Rightarrow AE.DA=AM.BE\)

\(\Rightarrow AE^2.a^2=MA^2.BE^2\Rightarrow AE^2.a^2=MA^2\left(AE^2-AB^2\right)\)

\(\Rightarrow AE^2.a^2=MA^2.AE^2-MA^2.a^2\Rightarrow\left(AE^2+MA^2\right).a^2=AE^2.AM^2\)

\(\Rightarrow\frac{1}{AE^2}+\frac{1}{AM^2}=\frac{1}{a^2}\)

19 tháng 10 2019

A B C D O E M G H F K

a) Xét \(\frac{a^2}{AE^2}+\frac{a^2}{AM^2}=\frac{CM^2}{ME^2}+\frac{CE^2}{ME^2}=1\)(ĐL Thales và Pytagoras). Suy ra \(\frac{1}{AE^2}+\frac{1}{AM^2}=\frac{1}{a^2}.\)

b) Ta dễ thấy \(\Delta\)ACG = \(\Delta\)ACM (c.g.c), suy ra ^AGC = ^AMC = ^BAE. Từ đây \(\Delta\)ABE ~ \(\Delta\)GBA (g.g)

Vậy BE.BG = AB2 = BO.BD nên \(\Delta\)BOE ~ \(\Delta\)BGD (c.g.c) (đpcm).

c) Gọi CH giao AB tại K. Theo hệ quả ĐL Thales \(\frac{CM}{BA}=\frac{EC}{EB}=2\)(Vì \(BE=\frac{a}{3}\))\(\Rightarrow CM=2a\)

Ta cũng có \(\frac{CF}{FM}=\frac{KB}{BA}\), suy ra \(\frac{\frac{a}{2}}{2a-\frac{a}{2}}=\frac{KB}{a}\Leftrightarrow KB=\frac{a}{3}\left(=BE\right)\)

Từ đó \(\Delta\)EKB vuông cân tại B, mà \(\Delta\)ABC vuông cân tại B nên E là trực tâm \(\Delta\)ACK

Suy ra AE vuông góc CK (tại H). Vậy, theo hệ thức lượng trong tam giác vuông (\(\Delta\)MEC) thì

\(CH^2=HE.HM\Leftrightarrow CH^3=HE.HC.HM\Leftrightarrow CH=\sqrt[3]{HE.HC.HM}\)(đpcm).