Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O E F S T I Q K D N J L P M G R
a) +) Dễ thấy: ^BAD = ^CAO (Cùng phụ ^ABC). Mà ^BAI = ^CAI nên ^OAI = ^DAI
Suy ra: ^OAI = ^DAO/2 = ^BAI - ^BAD = ^BAC/2 - 900 + ^ABC = ^BAC/2 - (^BAC+^ABC+^ACB)/2 + ^ABC
= (^ABC + ^ACB)/2 = \(\frac{\alpha-\beta}{2}=\frac{\alpha^2-\beta^2}{2\left(\alpha+\beta\right)}=\frac{\alpha^2-\beta^2}{sđ\widebat{BAC}}\) (đpcm).
+) Kẻ đường kính AG của đường tròn (O). Dễ thấy: Tứ giác BICJ nội tiếp, gọi (BICJ) cắt AC tại R khác C.
Do AK=2R nên AK = AG. Ta có: ^ARB = ^ARI + ^BRI = ^IBC + ^ICB = (^ABC+^ACB)/2 = ^ABI + ^IBC = ^ABR
=> \(\Delta\)BAR cân tại A => AB = AR. Kết hợp với AK=AG, ^BAG = ^RAK (cmt) => \(\Delta\)ABG = \(\Delta\)ARK (c.g.c)
=> ^ABG = ^ARK = 900 => ^KRC = ^KDC = 900 => Tứ giác DKCR nội tiếp
=> AD.AK = AR.AC = AI.AJ => Tứ giác DIJK nội tiếp (đpcm).
b) \(\Delta\)KAG cân tại A có phân giác AI => AI vuông góc KG hay AM vuông góc KG. Mà AM vuông góc GM
Nên K,G,M thẳng hàng => K,M,G,N thẳng hàng => AM vuông góc KN tại M
Ta thấy: M là trung điểm IJ, KM vuông góc IJ tại M nên \(\Delta\)KIJ cân tại K
Xét đường tròn (KIJ): KI = KJ, KN vuông góc IJ => KN là đường kính của (KIJ)
Mà D thuộc đường tròn (KIJ) (cmt) => ^KDN = 900 => ND vuông góc AK tại D => N,L,D thẳng hàng
Xét \(\Delta\)AKN có: AM vuông góc KN, ND vuông góc AK, AM và ND cùng đi qua L
=> L là trực tâm \(\Delta\)AKN => KL vuông góc AN (đpcm).
c) Gọi P là trực tâm của \(\Delta\)AJQ
Do \(\Delta\)KIJ cân tại K => ^KIJ = ^KJI. Có tứ giác DIJK nội tiếp => ^KIJ = ^KDJ => ^KDJ = ^KJI
Từ đó: \(\Delta\)DKJ ~ \(\Delta\)JKA (g.g) => KJ2 = KD.KA => KQ2 = KD.KA => \(\Delta\)KQD ~ \(\Delta\)KAQ (c.g.c)
Suy ra: ^QDJ = ^KDQ + ^KDJ = ^AQK + ^AJK = 1800 - ^QAJ = 1800 - ^QPJ => Tứ giác PQDJ nội tiếp
^PDJ = ^PQJ => ^PDK + ^KDJ = ^PDK + ^QJA = ^PQJ => ^PDK = ^PQJ - ^QJA = 900
=> PD vuông góc AD. Mà BC vuông góc AD tại D nên PD trùng BC hay P nằm trên BC (đpcm).
d) Ta thấy: ^ABC > ^ACB (\(\alpha>\beta\)) => ^BAD < ^CAD. Lại có: ^BAI = ^CAI, ^BAD + ^CAD = ^BAI + ^CAI = ^BAC
Suy ra ^BAD < ^BAI => B và I nằm khác khía so với AD => D thuộc [BF]
Hạ IS, IT vuông góc với AC,AB thì F thuộc [DT] => Thứ tự các điểm trên BC là B,D,F,T,C. Do đó: ^IFC = ^DFK < 900
Ta xét thứ tự các điểm trên cạnh AC:
+) A,S,E,C: Vì IS vuông góc AC, theo thứ tự này thì ^IEC > 900. Cũng dễ có: \(\Delta\)IES = \(\Delta\)IFT (Ch.cgv)
=> ^IES = ^IFT < 900 => ^IFT + ^IEC = 1800 => Tứ giác FIEC nội tiếp => ^ECF = ^DIK
Mà ^DIK = ^DJK = ^DAI = \(\frac{\alpha-\beta}{2}\) nên \(\beta=\frac{\alpha-\beta}{2}\Rightarrow\alpha=3\beta\) (*)
+) A,E,S,C: Trong TH này thì ^IEC < 900 => ^IFT + ^IEC < 1800 => ^ECF + ^EIF > 1800
=> ^ECF > ^DIK hay \(\beta>\frac{\alpha-\beta}{2}\Rightarrow\alpha< 3\beta\) (**)
Từ (*) và (**) suy ra: \(\alpha\le3\beta\) (đpcm).
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
A B M C O O 1 2 O I E D N
a) Có ^AO1O2 = ^AO1M/2 = 1/2.Sđ(AM của (O1) = ^ABM = ^ABC. Tương tự ^AO2O1 = ^ACB
Suy ra \(\Delta\)AO1O2 ~ \(\Delta\)ABC (g.g) (đpcm).
b) Từ câu a ta có \(\Delta\)AO1O2 ~ \(\Delta\)ABC. Hai tam giác này có đường trung tuyến tương ứng AO,AI
Khi đó \(\Delta\)AOO1 ~ \(\Delta\)AIB (c.g.c) => \(\frac{AO}{AO_1}=\frac{AI}{AB}\). Đồng thời ^OAI = ^O1AB
=> \(\Delta\)AOI ~ \(\Delta\)AO1B (c.g.c). Mà \(\Delta\)AO1B cân tại O1 nên \(\Delta\)AOI cân tại O (đpcm).
c) Xét đường tròn (O1): ^DAM nội tiếp, ^DAM = 900 => DM là đường kính của (O1)
=> ^DBM = 900 => DB vuông góc với BC. Tương tự EC vuông góc với BC
Do vậy BD // MN // CE. Bằng hệ quả ĐL Thales, dễ suy ra \(\frac{ND}{NE}=\frac{MB}{MC}\)(1)
Áp dụng ĐL đường phân giác trong tam giác ta có \(\frac{MB}{MC}=\frac{AB}{AC}\)(2)
Từ (1) và (2) suy ra \(\frac{ND}{NE}=\frac{AB}{AC}\)=> ND.AC = NE.AB (đpcm).
a) AM là đường phân giác \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)\(\Rightarrow\widebat{BM}=\widebat{CM}\)
=> M là điểm chính giữa cung BC
=> OM _|_ BC (đpcm)
b) AN là phân giác \(\widehat{CAt}\)
=> \(\widehat{tAN}=\widehat{NAC}\)mà \(\widehat{tAN}=\widehat{NCB}\)(Tứ giác ANCB nội tiếp)
và \(\widehat{NAC}=\widehat{NMC}\)(tứ gics ANCB nội tiếp)
=> \(\widehat{NCB}=\widehat{NMC}\)
Xét tam giác NCD và tam giác NMC có:
\(\widehat{MNC}\)chung
\(\widehat{NCB}=\widehat{NMC}\left(cmt\right)\)
=> Tam giác NCD đồng dạng với tam giác NMC (g.g)
=> \(\widehat{NCM}=\widehat{NDC}\)mà \(\widehat{NDC}=90^o\)và \(\widehat{NCM}=90^o\)
=> NC _|_ CM
Xét tam giác NCM nội tiếp có NC _|_ CM
=> NM là đường kính
=> N,O,M thẳng hàng
c) Tam giác MAN nội tiếp đường kín MN
=> AM _|_ AN => Tam giác KAD vuông tại A
Xét tam giác KAD vuông tại A có AI là đường trung bình
=> AI=ID
=> Tam giác AID cân tại A
=> \(\widehat{IAD}=\widehat{IDA}\)(tính chất tam giác cân) hay \(\widehat{IAB}+\widehat{BAD}=\widehat{IDA}\)
Lại có \(\widehat{DAC}+\widehat{DCA}=\widehat{IDA}\)(tính chất góc ngoài)
\(\Rightarrow\widehat{IAB}+\widehat{BAD}=\widehat{DAC}+\widehat{DCA}\)
mà \(\widehat{BAD}=\widehat{DAC}\)(AD là phân giác) => \(\widehat{IAB}=\widehat{DCA}\)
mà 2 góc này nằm ở vị trí góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung
=> IA là tiếp tuyến của (O)
Lời giải:
a) Thấy $BI,BJ$ là hai phân giác của hai góc kề bù nên \(BI\perp BJ\Rightarrow \angle IBJ=90^0\)
Tương tự \(\angle ICJ=90^0\). Do đó \(\angle IBJ+\angle ICJ=180^0\) nên $BICJ$ nội tiếp
b)
Để ý \(\angle EBI=\angle \frac{A}{2}+\angle \frac{B}{2}=\angle BIE\Rightarrow \triangle BIE\) cân tại $E$ nên $IE=BE$
Khi đó\((\frac{IE}{ME})^2=(\frac{BE}{ME})^2=\frac{BM^2}{ME^2}+1=\cot ^2\frac{\angle EBC}{2}=1+\cot^2\frac{A}{2}=\frac{1}{\sin^2 \frac{A}{2}}(1)\)
Theo công thức bán kinh đường tròn bàng tiếp:
\((\frac{JA}{NJ})^2=(\frac{JA}{JK})^2=\frac{1}{\sin ^2\frac{A}{2}}(2)\)
Từ \((1),(2)\Rightarrow \frac{IE}{ME}=\frac{JA}{NJ}\). Kết hợp với \(\angle MEI=\angle NJI\Rightarrow \triangle MEI\sim \triangle NJA\)
\(\Rightarrow \angle EIM=\angle JAN\Rightarrow IM\parallel AN\) (đpcm)
c) Nhìn hình thức xấu quá, hên xui vậy
Ta có \(\triangle ICJ\sim \triangle BNJ\Rightarrow IC=\frac{CJ.BN}{NJ}\)
Tứ giác $NCKJ$ nội tiếp nên theo định lý Ptoleme \(NK=\frac{2NC.NJ}{CJ}\)
\(\Rightarrow IC.NK=2BN.NC\)
Biết rằng \(JK=r_A=p\tan\frac{A}{2}\rightarrow AK=p\rightarrow NC=CK=p-b\rightarrow BN=p-c\)
\(\rightarrow IC.NK=2(p-b)(p-c)\)
\(\left\{\begin{matrix} \frac{ID}{DA}=\frac{DM}{DN}=\frac{DE}{DJ}=\frac{IE}{AJ}\\ \frac{ID}{DA}=\frac{DM}{DN}=\frac{ME}{NJ}\end{matrix}\right.\Rightarrow \frac{ID^2}{DA^2}=\frac{IE^2-ME^2}{JA^2-NJ^2}=\frac{BM^2}{AK^2}=\frac{a^2}{4p^2}\Rightarrow\frac{ID}{DA}=\frac{a}{2p}\)
\(AK^2=p^2\). Mặt khác theo định lý hàm cos:
\(AN^2=AB^2+BN^2-2AB.BN\cos\angle ABC=c^2+(p-c)^2-2c(p-c)\cos\frac{A}{2}\)
Có đủ các dữ kiện rồi thì chỉ cần biến đổi đại số thôi
Akai Haruma Nguyễn Huy Thắng Hoàng Lê Bảo Ngọc Trần Việt Linh Võ Đông Anh Tuấn Lê Nguyên Hạo ......................................................................................