Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc của ô tô nửa đoạn đường đầu là x, nửa đoạn đường cuối là y (y > x > 0)
Theo đề bài ta có: y = 20%x + x = \(\frac{1}{5}\)x + x = \(\frac{6}{5}\)x
⇒\(\frac{x}{y}\)=\(\frac{5}{6}\) (1)
Gọi thời gian đi nửa đoạn đường đầu ô tô đi là t1, thời gian nửa đoạn đường sau là t2 (t1 > t2 > 0)
=> t1 - t2 = \(\frac{10}{60}\)=\(\frac{1}{6}\)(h)
Ta có: x.t1 = y.t2 (cùng bằng \(\frac{1}{2}\) quãng đường AB)
⇒\(\frac{x}{y}\)=\(\frac{t2}{t1}\) kết hơp với (1) ⇒\(\frac{t2}{t1}\)=\(\frac{5}{6}\)⇔\(\frac{t2}{5}\)=\(\frac{t1}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{t2}{5}\)=\(\frac{t1}{6}\)=\(\frac{t1-t2}{6-5}\)=\(\frac{1}{6}\)
⇒\(\hept{\begin{cases}t2=\frac{1}{6}.5=\frac{5}{6}\\t1=\frac{1}{6}.6=1\end{cases}}\)
Vậy thời gian thực tế ô tô đi hết quãng đường AB là:
t1 + t2 = 1 + \(\frac{5}{6}\)=\(\frac{11}{6}\)= 1h50'
Trên 2/3 đoạn đường còn lại, ô tô tăng vận tốc thêm 20% so với vận tốc dự kiến.
20% = 20/100 = 1/5.
Gọi vận tốc dự kiến là 5 phần, vận tốc đi 2/3 đoạn cuối sẽ là:
5 + 1 = 6 phần
Tỉ lệ vận tốc thực đi và vận tốc thực dự kiến là: 6/5
Thời gian đi tỉ lệ nghịch với vận tốc. Thời gian thực đi/thời gian dự kiến =5/6.
Gọi thời gian dự kiến đi trong đoạn đường còn lại là 6 phần
Thì thời gian thực đi trong đoạn đường còn lại là 5 phần.
Hiệu số phần là: 6 - 5 = 1 (phần)
1 phần này tương ứng với 20 phút = 1/3 giờ.
Suy ra thời gian dự kiến đi đoạn đường còn lại là 6 phần x 1/3 giờ = 2 giờ.
Vậy đi 2/3 quãng đường AB dự kiến hết 2 giờ => đi cả quãng đường hết 2 x 3/2 = 3 giờ.
Không thể biết được đoạn đường AB dài bao nhiêu km, mà chỉ biết đi hết 3 giờ thôi (vì còn phụ thuộc vào vận tốc dự kiến)