K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số ghế của mỗi dãy ban đầu là x(ghế)

(Điều kiện: \(x\in Z^+\))

Số dãy ghế ban đầu là \(\dfrac{120}{x}\left(dãy\right)\)

Số ghế ở mỗi dãy lúc sau là x+5(ghế)

Số dãy ghế lúc sau là \(\dfrac{120+72}{x+5}=\dfrac{192}{x+5}\left(dãy\right)\)

Trường phải kê thêm 3 dãy ghế nên ta có:

\(\dfrac{192}{x+5}-\dfrac{120}{x}=3\)

=>\(\dfrac{64}{x+5}-\dfrac{40}{x}=1\)

=>\(\dfrac{64x-40x-200}{x\left(x+5\right)}=1\)

=>\(x\left(x+5\right)=24x-200\)

=>\(x^2+5x-24x+200=0\)

=>\(x^2-19x+200=0\)

=>\(x\in\varnothing\)

Vậy: Không có số liệu nào thỏa mãn yêu cầu đề bài

17 tháng 5

Giải:

Gọi số ghế lúc đầu của mỗi dãy là: \(x\) (ghế); \(x\) \(\in\) N*

Số dãy ghế ban đầu là: 120 : \(x\) = \(\dfrac{120}{x}\)

Tổng số ghế lúc sau là: 120 + 72  = 192 (ghế)

Số dãy ghế lúc sau là: \(\dfrac{192}{x+5}\) 

Theo bài ra ta có: \(\dfrac{192}{x+5}-\dfrac{120}{x}\) = 3

                              \(\dfrac{64}{x+5}-\dfrac{40}{x}=1\)

                      64\(x\) - 40\(x\) - 200 = .\(x\).(\(x\) + 5)

                      24\(x\)  - 200 = \(x^2\) + 5\(x\)

                      \(x^2\) + 5\(x\) - 24\(x\) + 200 = 0

                       \(x^2\) + (5\(x-24x\)) + 200 = 0

                       \(x^2\) - 19\(x\) + 200 = 0 

                       \(x^2\) - 2.\(\dfrac{19}{2}\)\(x\) +  \(\dfrac{361}{4}\) + \(\dfrac{439}{4}\) = 0

                        (\(x-\dfrac{19}{2}\))2 + \(\dfrac{439}{4}\) = 0

                         (\(x-\dfrac{19}{2}\))2 ≥ 0 \(\forall\) \(x\)

            ⇒ (\(x-\dfrac{19}{2}\))2 + \(\dfrac{439}{2}\) ≥ \(\dfrac{439}{2}\) > 0 ∀ \(x\)

Vậy \(x\in\) \(\varnothing\)

Kết luận không có số ghế ban đầu của mỗi dãy nào thỏa mãn đề bài.  

                     

 

2 tháng 2 2019

Giả sử hội trường có a dãy và b là số ghế của mỗi dãy. (a,b∈N∗a,b∈N∗).

Ta có phương trình: ab=500ab=500 và 

⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25

Vậy lúc đầu người ta định xếp 2525 dãy ghế.

27 tháng 6 2023

Gọi số dãy ghế dự định lúc đầu là \(x\) (dãy)

ĐK: \(x>20;x\in\mathbb N^*\)

Số ghế trong một dãy dự định lúc đầu là: \(\dfrac{120}{x}\) (ghế)

Thực tế số người tham dự là 160 và số dãy ghế là: \(x+2\)

⇒ Số ghế trong một dãy là: \(\dfrac{160}{x+2}\) (ghế)

Vì thực tế mỗi dãy ghế phải kê thêm 1 ghế so với dự định nên ta có pt:

\(\dfrac{160}{x+2}-\dfrac{120}{x}=1\)

.... (Tự giải pt)

\(\Leftrightarrow x^2-38+240=0\)

\(\Leftrightarrow\left(x-8\right)\left(x-30\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\left(\text{loại}\right)\\x=30\left(\text{TM}\right)\end{matrix}\right.\)

Vậy số dãy ghế dự định lúc đầu là 30 dãy ghế.

30 tháng 3 2019

Gọi x là số dãy ghế; y là số người trên mỗi dãy ghế (x,y>0) 
Ta có tổng cộng 80 người nên x*y =80 <=> x =80/y (1) 
Nếu bớt đi 2 dãy ghế tức x-2 thì mỗi dãy còn lại phải xếp thêm 2 người tức y+2 
Ta có: (x-2)*(y+2) = 80 (2) 
Thay (1) vào (2) ta có: 2y^2 +4y -160 =0 
<=> y=8 => x=10 
Vậy có 10 dãy ghế và có 8 người trên mỗi dãy

30 tháng 3 2019

Gọi x là số dãy ghế trong phòng họp ( x nguyên ; x>2)

Số người ngồi trên 1 dãy là \(\frac{80}{x}\)(người)

Nếu bới đi 2 dãy thì số dãy ghế còn lại là : x - 2 (dãy)

Số người ngồi trên mỗi dãy sẽ là: \(\frac{80}{x-2}\)(người )

Ta có phương trình :

\(\frac{80}{x-2}-\frac{80}{x}=2\Leftrightarrow\frac{40}{x-2}-\frac{40}{x}=1\Leftrightarrow x^2-2x-80=0\)

Giaỉ phương trình ta được \(x_1=10;x_2=-8\left(lọai\right)\)

Vậy số dãy ghế lúc đầu là 10 dãy và mỗi dãy xếp 8 người ngồi

31 tháng 7 2016

một phòng họp có 120 ghế ngồi được xếp thành các dãy có số ghế như nhau, nhưng số người đến họp là 130 người nên người ta phài kê thêm 3 dãy, và mỗi dãy bớt đi 2 ghế. hỏi ban đầu phòng họp có bao nhiêu dãy ghế

18 tháng 8 2016

làm gì mà chép lại câu hỏi của nta v

10 tháng 6 2017

Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x  và  x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
 308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại)  vì 250 không chia hết cho 30@x_2=25 (nhận))┤ 
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.

10 tháng 6 2017

Cách 1:

Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0) 
Ta có tổng cộng 250 người nên x.y =250 (1) 
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2) 
Từ (1) và (2) ta có hệ:

 

Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.

Gọi số dãy lúc đầu là x

Theo đề, ta có: 70/(x-2)-70/x=4

=>(70x-70x+140)/(x^2-2x)=4

=>4x^2-8x-140=0

=>x=7

28 tháng 5 2023

Gọi số dãy ghế lúc đầu là x(x \(\in\) N* , x > 0)

Số ghế mỗi dãy: \(\dfrac{70}{x}\) (ghế)

Nếu bớt đi 2 dãy ghế ngồi thì mỗi dãy còn lại phải xếp thêm 4 người mới đủ chỗ ngồi.

\(\Rightarrow\left(x-2\right)\left(\dfrac{70}{x}+4\right)=70\) 

\(\Rightarrow4x-\dfrac{140}{x}+62=70\) 

\(\Rightarrow4x^2-140+62x=70x\) (do x \(\in\) N* )

\(\Rightarrow4x^2-8x-140=0\) 

\(\Rightarrow x=-5\left(l\right);x=7\left(n\right)\)  

Vậy lúc đầu phòng họp có 7 dãy ghế.

 

 

Đáp án : Hội trường có 10 dãy ghế hoặc 20 dãy ghế, giải thích các bước giải :

Gọi số ghế ban đầu là x, x thuộc N* => ban đầu mỗi dãy ghế có 200/x ghế 

=> Vì phải kê thêm 2 dãy ghế => Ta có x + 2 dãy ghế 

=> Vì mỗi dãy phải ngồi thêm 2 người => mỗi dãy lại có : 200/x + 2 ghế 

=> Số người đc ngồi là : ( x + 2 ) . ( 200/x + 2 ). Vì có 6 người k có ghế nên ( x + 2). ( 200/x + 2 ) +6= 270 

=> ( x +2). ( 200/x + 2) = 264

=> ( x +2). ( 200 +2x ) = 264x 

=> 2x2 + 400 + 204x = 264x 

=> 2x2 - 60x + 4000 = 0 

=> 2(x-10 ). ( x -20 ) = 0, Kết luận vậy từ đây ta có thể suy ra đc x thuộc { 10; 20 }

23 tháng 2 2018

gọi dãy ghế lúc đầu là x (đk : x>0, x thuộc Z) thì số dãy ghế sau khi xếp lại là x+5 
theo đề bài, ta có :
số ghế mỗi dãy lúc đầu là 120/x
số ghế mỗi dãy sau khi xếp lại là (120/x)-4 / x+5 = 120-4x /  x(x+5)
ta có phương trình : 120/x - 4 = 120-4x / x(x+5)
<=> 120-4x / x = 120-4x / x(x+5)
<=> (120-4x)(x+5) / x(x+5) = 120-4x / x(x+5) 
<=> (120-4x)(x+5)=120-4x
<=> (120-4x)(x+5) - (120-4x) = 0
<=> (120-4x)(x+5-1) = 0
<=> (120-4x)(x+4) = 0 
<=> 120-4x = 0 
        x+4 =0
<=> x = 30 (thỏa đk)
       x = -4 (ko thỏa đk)
vậy số dãy ghế ban đầu là 30 

23 tháng 2 2018

120 cái ghế