Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tâm đường tròn nội tiếp tam giác đều là giao điểm của ba đường trung trực của tam giác đó.
Vẽ hai đường trung trực của tam giác đều, giao điểm của đường trung trực chính là tâm đường tròn nội tiếp ta giác đều
Tham khảo :
* Chứng minh:
a)
Ta có:
Tổng ba góc của tam giác \(ABC\) bằng \(180^o\) nên \(\widehat A + \widehat B = {180^o} - \widehat C\)
Góc \(ACx\) là góc ngoài của tam giác \(ABC\) nên\(\widehat {ACx}= 180^o-\widehat C\)
Do đó: \(\widehat {ACx} = \widehat A + \widehat B\).
b) Tam giác \(ABC\) vuông tại \(A\)
\( \Rightarrow \widehat A = {90^o}\)
Áp dụng định lí tổng các góc của một tam giác vào\(\Delta ABC\) ta có:
\(\widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat B + \widehat C = {180^o} - \widehat A = {180^o} - {90^o} = {90^o}\)
c) Giả sử có tam giác \(ABC\) đều
\( AB = AC =BC \)
\( ΔABC\) cân tại \(A\) và cân tại \( B\).
\( \Rightarrow \widehat A = \widehat B;\,\,\,\,\widehat A = \widehat C\) (tính chất tam giác cân)
\( \Rightarrow \widehat A = \widehat B = \widehat C\)
d) Giả sử\(\Delta ABC\) có\(\widehat A = \widehat B = \widehat C\)
Có\(\widehat A = \widehat B\Rightarrow \)\(\Delta ABC\) cân tại \(C\), do đó \(CA=CB\).
Có\(\widehat B = \widehat C\Rightarrow \) \(\Delta ABC\) cân tại \(A\) do đó \(AC=AB\)
\( AB = AC = BC ΔABC\) là tam giác đều.
Các tính chất ở cá câu a ,b được suy ra từ định lí "Tổng ba góc của một tam giác bằng 180o".
Tính chất ở câu c được suy ra từ định lí "Trong một tam giác cân hai góc ở đáy bằng nhau".
Tính chất ở câu d được suy ra từ định lí: Nếu một tam giác có ba góc bằng nhau thì tam giác đo là tam giác cân.
Các tính chất ở các câu (a); (b) được suy ra từ định lí: “Tổng ba góc của một tam giác bằng nhau bằng 1800”.
Tính chất ở câu (c) được suy ra từ định lí: “Trong tam giác cân, hai góc ở đáy bằng nhau”.
Tính chất ở câu (d) được suy ra từ định lí: “Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân”.
Câu 1: Qua một điểm ở ngoài đường thẳng chỉ có một đường thẳng song song với đường thẳng đó
Câu 2:
a b c GT: a // c, b\(\perp\)a
KL: c\(\perp\)b
Câu 3: O x' x y' y 100 o
Góc x'Oy' đối đỉnh với góc xOy nên cũng có số đo là 100o
Câu 4: Đường trung trực của đoạn thẳng là 1 đường thẳng vuông góc với đoạn thẳng và đi qua trung điểm của đoạn thẳng đó
O A B
Câu 5: Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song vói nhau
a b c GT: a, b // c
KL: a // b // c
Học tốt!!!
\(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Leftrightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Leftrightarrow12x-4y=3x+3y\)
\(\Leftrightarrow12x-4y-3x-3y=0\)
\(\Leftrightarrow9x-7y=0\)
\(\Leftrightarrow9x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{9}\)
a) Góc ngoài của tam giác bằng tổng hai góc trong không kề với nó
- Được suy ra từ Định lí tổng ba góc của một tam giác
b) trong một tam giác vuông,hai góc nhọn phụ nhau
- Được suy ra từ Định nghĩa tam giác vuông
c) Trong một tam giác đều,các góc bằng nhau
- Được suy ra từ các định lí :
+ Trong một tam giác câu, hai góc ở đáy bằng nhau.
+ Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.
d) nếu một tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều
- ĐL đảo của ĐL ở câu c
- Các tính chất ở các câu a, b được suy ra từ định lí "Tổng ba góc của một tam giác bằng 180o".
* Chứng minh:
?4 bài 1 – trang 107.