K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(1. Sử dụng hai góc kề bù có ba điểm nằm trên hai cạnh là hai tia đối nhau. 2. Ba điểm cùng thuộc một tia hoặc một một đường thẳng 3. Trong ba đoạn thẳng nối hai trong ba điểm có một đoạn thẳng bằng tổng hai đoạn thẳng kia. 4. Hai đoạn thẳng cùng đi qua hai trong ba điểm ấy cùng song song với đường thẳng thứ ba. 5. Hai đường thẳng cùng đi qua hai trong ba điểm ấy cùng vuông góc với...
Đọc tiếp

\(1. Sử dụng hai góc kề bù có ba điểm nằm trên hai cạnh là hai tia đối nhau. 2. Ba điểm cùng thuộc một tia hoặc một một đường thẳng 3. Trong ba đoạn thẳng nối hai trong ba điểm có một đoạn thẳng bằng tổng hai đoạn thẳng kia. 4. Hai đoạn thẳng cùng đi qua hai trong ba điểm ấy cùng song song với đường thẳng thứ ba. 5. Hai đường thẳng cùng đi qua hai trong ba điểm ấy cùng vuông góc với đường thẳng thứ ba. 6. Đường thẳng cùng đi qua hai trong ba điểm ấy có chứa điểm thứ ba. 7. Sử dụng tính chất đường phân giác của một góc, tính chất đường trung trực của đoạn thẳng, tính chất ba đường cao trong tam giác . 8. Sử dụng tính chất hình bình hành. 9. Sử dụng tính chất góc nội tiếp đường tròn. 10. Sử dụng góc bằng nhau đối đỉnh 11. Sử dụng trung điểm các cạnh bên, các đường chéo của hình thang thẳng hàng 12. Chứng minh phản chứng 13. Sử dụng diện tích tam giác tạo bởi ba điểm bằng 0 14. Sử dụng sự đồng qui của các đường thẳng.\)

0
19 tháng 4 2023

Tâm đường tròn nội tiếp tam giác đều là giao điểm của ba đường trung trực của tam giác đó.

Vẽ hai đường trung trực của tam giác đều, giao điểm của đường trung trực chính là tâm đường tròn nội tiếp ta giác đều

16 tháng 2 2022

Tham khảo :

* Chứng minh:

a)

Ta có:

Tổng ba góc của tam giác \(ABC\) bằng \(180^o\) nên \(\widehat A + \widehat B = {180^o} - \widehat C\)

Góc \(ACx\) là góc ngoài của tam giác \(ABC\) nên\(\widehat {ACx}= 180^o-\widehat C\)

Do đó: \(\widehat {ACx} = \widehat A + \widehat B\).

b) Tam giác \(ABC\) vuông tại \(A\)

\( \Rightarrow \widehat A = {90^o}\)

Áp dụng định lí tổng các góc của một tam giác vào\(\Delta ABC\) ta có:

\(\widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat B + \widehat C = {180^o} - \widehat A = {180^o} - {90^o} = {90^o}\)

c) Giả sử có tam giác \(ABC\) đều

\( AB = AC =BC \)

\( ΔABC\) cân tại \(A\) và cân tại \( B\).

\( \Rightarrow \widehat A = \widehat B;\,\,\,\,\widehat A = \widehat C\) (tính chất tam giác cân)

\( \Rightarrow \widehat A = \widehat B = \widehat C\)

d) Giả sử\(\Delta ABC\) có\(\widehat A = \widehat B = \widehat C\)

Có\(\widehat A = \widehat B\Rightarrow \)\(\Delta ABC\) cân tại \(C\), do đó \(CA=CB\).

Có\(\widehat B = \widehat C\Rightarrow \) \(\Delta ABC\) cân tại \(A\) do đó \(AC=AB\)

\( AB = AC = BC ΔABC\) là tam giác đều.

 

Các tính chất ở cá câu a ,b được suy ra từ định lí "Tổng ba góc của một tam giác bằng 180o".

Tính chất ở câu c được suy ra từ định lí "Trong một tam giác cân hai góc ở đáy bằng nhau".

Tính chất ở câu d được suy ra từ định lí: Nếu một tam giác có ba góc bằng nhau thì tam giác đo là tam giác cân.

20 tháng 4 2017

Các tính chất ở các câu (a); (b) được suy ra từ định lí: “Tổng ba góc của một tam giác bằng nhau bằng 1800”.

Tính chất ở câu (c) được suy ra từ định lí: “Trong tam giác cân, hai góc ở đáy bằng nhau”.

Tính chất ở câu (d) được suy ra từ định lí: “Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân”.


Câu 1: Qua một điểm ở ngoài đường thẳng chỉ có một đường thẳng song song với đường thẳng đó

Câu 2:

a b c GT: a // c, b\(\perp\)a

                                                                 KL: c\(\perp\)b

Câu 3:  O x' x y' y 100 o

Góc x'Oy' đối đỉnh với góc xOy nên cũng có số đo là 100o

Câu 4: Đường trung trực của đoạn thẳng là 1 đường thẳng vuông góc với đoạn thẳng và đi qua trung điểm của đoạn thẳng đó

O A B

Câu 5: Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song vói nhau

a b c GT: a, b // c

                                                                      KL: a // b // c

Học tốt!!!

29 tháng 7 2019

\(\frac{3x-y}{x+y}=\frac{3}{4}\)

\(\Leftrightarrow4\left(3x-y\right)=3\left(x+y\right)\)

\(\Leftrightarrow12x-4y=3x+3y\)

\(\Leftrightarrow12x-4y-3x-3y=0\)

\(\Leftrightarrow9x-7y=0\)

\(\Leftrightarrow9x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{9}\)

30 tháng 9 2018

a) Góc ngoài của tam giác bằng tổng hai góc trong không kề với nó

- Được suy ra từ Định lí tổng ba góc của một tam giác

b) trong một tam giác vuông,hai góc nhọn phụ nhau

- Được suy ra từ Định nghĩa tam giác vuông 

c) Trong một tam giác đều,các góc bằng nhau

- Được suy ra từ các định lí :

 + Trong một tam giác câu, hai góc ở đáy bằng nhau.

 + Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.

d) nếu một tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều

 - ĐL đảo của ĐL ở câu c

29 tháng 6 2017

- Các tính chất ở các câu a, b được suy ra từ định lí "Tổng ba góc của một tam giác bằng 180o".

* Chứng minh:

?4 bài 1 – trang 107.