K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

Ta có : \(\hept{\begin{cases}c\ge3\left(1\right)\\bc\ge6\left(2\right)\\abc\ge6\left(3\right)\end{cases}}\)

\(\text{Từ (1) và (2)}\Rightarrow b\ge2\)

\(\text{Từ (2) và (3)}\Rightarrow a\ge1\)

Ta có \(P=a+b+c\ge1+2+3=6\)

Dấu "=" <=> a = 1 ; b = 2 ; c = 3

Vậy ................................................... 

30 tháng 10 2018

cậu suy kiểu gì mà từ (1) và (2) lại ra \(b\ge2\)

từ (2) \(\Rightarrow b\ge\frac{6}{c}\)mà \(c\ge3\)cơ mà!!!

Thanks

NV
30 tháng 1 2022

\(\left\{{}\begin{matrix}a\ge4\\b\ge5\end{matrix}\right.\) \(\Rightarrow a^2+b^2\ge16+25=41\Rightarrow c^2=90-\left(a^2+b^2\right)\le49\Rightarrow c\le7\)

Tương tự: \(b=\sqrt{90-\left(a^2+c^2\right)}\le\sqrt{90-\left(4^2+6^2\right)}=\sqrt{38}\)

\(a\le\sqrt{90-\left(5^2+6^2\right)}=\sqrt{29}\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)\left(a-9\right)\le0\\\left(b-5\right)\left(b-8\right)\le0\\\left(c-6\right)\left(c-7\right)\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}13a\ge a^2+36\\13b\ge b^2+40\\13c\ge c^2+42\end{matrix}\right.\)

\(\Rightarrow13\left(a+b+c\right)\ge a^2+b^2+c^2+118=208\)

\(\Rightarrow a+b+c\ge16\)

\(P_{min}=16\) khi \(\left(a;b;c\right)=\left(4;5;7\right)\)

30 tháng 1 2022

a>=4,b>=5,c>=6

=>a+b+c>=4+5+6>=15

hay P>=15

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:
Áp dụng BĐT Cô-si:

$\frac{4}{9}a^2+b^2\geq \frac{4}{3}ab\geq \frac{4}{3}.6=8$

$\frac{5}{9}a^2\geq \frac{5}{9}.3^2=5$

Cộng theo vế:

$S\geq 8+5=13$

Vậy $S_{\min}=13$ khi $(a,b)=(3,2)$

23 tháng 2 2018

Vì \(\hept{\begin{cases}a\ge3\\ab\ge6\end{cases}}\)=> \(b\ge2\)

=> \(\hept{\begin{cases}a^2\ge9\\b^2\ge4\end{cases}}\)=> \(a^2+b^2\ge13\)

Dấu "=" xảy ra khi : \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)

15 tháng 10 2017

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

15 tháng 10 2017

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

NV
3 tháng 11 2019

Để cho dễ nhìn, đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow xyz=1\)

\(P=\left(\frac{y^2}{x}+\frac{z^2}{y}+\frac{x^2}{z}\right)+\left(\frac{z^2}{x}+\frac{x^2}{y}+\frac{y^2}{z}\right)\)

\(P\ge\frac{\left(x+y+z\right)^2}{x+y+z}+\frac{\left(x+y+z\right)^2}{x+y+z}=2\left(x+y+z\right)\ge2.3\sqrt[3]{xyz}=6\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;1\right)\) hay \(\left(a;b;c\right)=\left(1;1;1\right)\)

3 tháng 11 2019

Nguyễn Việt Lâm, @Nk>t@ help me

4 tháng 2 2016

1) TA có 

\(\frac{a^2+a}{b+c}+\frac{b^2+b}{c+a}+\frac{c^2+c}{a+b}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

(*) Xét BĐT : \(\frac{m^2}{x}+\frac{n^2}{y}\ge\frac{\left(m+n\right)^2}{x+y}\) với x ; m ; y ; n > 0 

( cái này xét hiệu là ok )

(*)ÁP dụng BĐT ta có \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{9}{2}\)

Dấu ''= '' xảy ra khi a = b= c = 3 

(*) TA cần  cm \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\) (1)

Đặt b + c = x ; c+a = y ; a+ b = z (x; y; z > 0 )

=> \(\frac{x+y+z}{2}=a+b+c\) => a = \(\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)

(1) <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\) <=> \(\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{x}{y}+\frac{z}{y}\right)+\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)

Dấu = xảy ra khi x = y= z <=> a = b =c = 3 

Vậy BĐT đc cm 

4 tháng 2 2016

(*) Áp dụng BĐT \(\frac{m^2}{a}+\frac{n^2}{b}\ge\frac{\left(m+n\right)^2}{a+b}\) với a ; b ;m ;n > 0 

Xét BĐT 

\(\frac{a^4}{a\left(a^2+ab+b^2\right)}+\frac{b^4}{b\left(b^2+bc+c^2\right)}+\frac{c^4}{c\left(c^2+ca+a^2\right)}\) 

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\) \(\ge\frac{a^2+b^2+c^2}{9}\)(1)

( Vì\(a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\))

(*) CM BĐT \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) ( biến đổi tương dương )

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{9^2}{3}=27\)

BĐT đc CM đấu '' = ' ' xảy ra khi a =  b =c = 3 

NV
13 tháng 6 2020

2.

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

\(P=\frac{3x}{2}+\frac{6}{x}+\frac{y}{2}+\frac{8}{y}+\frac{3x}{2}+\frac{3y}{2}\)

\(P=\left(\frac{3x}{2}+\frac{6}{x}\right)+\left(\frac{y}{2}+\frac{8}{y}\right)+\frac{3}{2}\left(x+y\right)\)

\(P\ge2\sqrt{\frac{18x}{2x}}+2\sqrt{\frac{8y}{2y}}+\frac{3}{2}.6=19\)

\(P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

NV
13 tháng 6 2020

1.

Do \(0\le a;b;c\le1\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-abc-a-b-c+ab+bc+ca\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)

Mặt khác \(0\le a;b;c\le1\Rightarrow\left\{{}\begin{matrix}b^2\le b\\c^3\le c\end{matrix}\right.\)

\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị