Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Độ biến dạng của lò xo tại vị trí cân bằng
Tại thời điểm t = 0 vật đi qua vị trí cân bằng theo chiều dương. Thời điểm lò xo không biến dạng lần đầu tiên ứng với li độ x = - ∆ l = - 1 cm
Đáp án D
\(\omega=\sqrt{\dfrac{g}{\Delta l}}\Rightarrow\Delta l=\dfrac{g}{\omega^2}=\dfrac{10}{\left(10\pi\right)^2}=\dfrac{1}{100}\left(m\right)=1\left(cm\right)\)
Đưa con lắc đến vị trí lò xo ko biến dạng, tức là lúc này vật có li độ là: \(x=\Delta l=1cm\)
\(\Rightarrow A=\sqrt{x^2+\dfrac{v^2}{\omega^2}}=\sqrt{1+\dfrac{\left(10\pi\sqrt{3}\right)^2}{\left(10\pi\right)^2}}=\sqrt{1+3}=2\left(cm\right)\)
Ta đã biết lực đàn hồi luôn có chiều chống lại tác nhân gây biến dạng, tức là nếu lò xo dãn, thì lực đàn hồi có xu hướng kéo lại, tức hướng lên; nếu lò xo nén, thì lực đàn hồi có xu hướng đẩy ra, tức hướng xuống
Còn lực kéo về là tổng hợp các lực tác dụng lên vật, có biểu thức là \(\overrightarrow{F}=m.\overrightarrow{a}\) nên lực kéo về sẽ luôn cùng chiều với gia tốc a, tức là luôn hướng về VTCB.
Biểu diễn 2 lực đó trên giấy, ta thấy chúng ngược chiều nhau khi vật đi từ \(\Delta l\rightarrow VTCB\) và \(VTCB\rightarrow\Delta l\)
Sử dụng đường tròn lượng giác, ta thấy trong một chu kỳ, tổng góc mà nó quay được khi đi từ \(\Delta l\rightarrow VTCB\) và \(VTCB\rightarrow\Delta l\) là:
\(\varphi=2arc\sin\left(\dfrac{\Delta l}{A}\right)=2arc\sin\left(\dfrac{1}{2}\right)=2.\dfrac{\pi}{6}=\dfrac{\pi}{3}\left(rad\right)\)
\(\Rightarrow t=\dfrac{\varphi}{\omega}=\dfrac{\pi}{3.10\pi}=\dfrac{1}{30}\left(s\right)\)
Giả sử: \(\pi^2\approx10\)
a) Khối lượng của vật: \(m=\dfrac{k}{\omega^2}=\dfrac{50}{\left(5\pi\right)^2}=0,2kg=200g\)
Chu kì của con lắc: \(T=\dfrac{2\pi}{\omega}=\dfrac{2}{5}\left(s\right)\)
b)Thế năng: \(W_t=\dfrac{1}{2}kx^2=\dfrac{1}{2}\cdot50\cdot0,02^2=0,01J\)
Tại li độ \(x=2cm\) thì \(v=-\omega Asin\left(\pi t+\varphi\right)=-50\pi sin\left(5\pi t+\dfrac{\pi}{2}\right)\Rightarrow t\)
Động năng: \(W_đ=\dfrac{1}{2}mv^2\)
Cơ năng con lắc: \(W=W_đ+W_t=0,24J\)
a) \(k=m\omega^2=50\Rightarrow m=0,2\left(kg\right)\)
\(T=\dfrac{2\pi}{\omega}=0,4\left(s\right)\)
b) \(W_t=\dfrac{1}{2}kx^2=0,01\left(J\right)\)
\(W=\dfrac{1}{2}kA^2=0,25\left(J\right)\)
\(W_đ=W-W_t=0,24\left(J\right)\)
c) \(\Delta l=\dfrac{mg}{k}=0,04\left(m\right)\)
\(v=\dfrac{1}{2}v_{max}\Rightarrow x=\dfrac{A\sqrt{3}}{2}=5\sqrt{3}\left(cm\right)=0,05\sqrt{3}\left(m\right)\)
\(F_{đh}=k\left(\Delta l+x\right)\approx6,33\left(N\right)\)
nói lại em kém anh 7 năm nhé. Nên bọn em cần gợi ý mới làm được chứ. Với lại hình như anh học cái này thì phải bít chứ. Its ra cũng phải có gợi ý...!
Thời điểm lò xo ko biến dạng là thời điểm mà vật ở VTCB
\(t=0\Rightarrow x=2\cos\left(\frac{2\pi}{3}\right)=-1\)
\(t=0\Rightarrow v=-\omega A\sin\left(\frac{2\pi}{3}\right)< 0\) => Vật chuyển động theo chiều âm
\(\Delta t_1=\frac{1}{\omega}.arc\cos\left(\frac{1}{2}\right)=\frac{1}{10\pi}.\frac{\pi}{6}=\frac{1}{60}\left(s\right)\)
\(\Delta t_2=\frac{T}{4}=\frac{1}{5.4}=\frac{1}{20}\left(s\right)\)
\(\Rightarrow\Delta t=\frac{1}{60}+\frac{1}{20}=...\)