Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x4 - x3 -2x2 -x +2=0
=> (2x4- 2x3) +(x3-x2) -(x2 -x) -(2x-2)=0
=>(x-1)(2x3+x2-x-2)=0
=>(x-1)2( 2x2+3x+2)=0 ( vì 2x2+3x+2>0)
=> x-1=0 => x =1
Vì x = 0 ko là nghiệm của phương trình
Chia 2 vế cho x2 ≠ 0 ta đc \(2\left(x^2+\frac{25}{x}\right)-21\left(x+\frac{5}{x}\right)+74=0\)
Đặt \(t=x+\frac{5}{x}\) thì \(t^2=x^2+\frac{25}{x^2}+10\)
Phương trình trở thành: \(2\left(t^2-10\right)-21t+74=0\Leftrightarrow2t^2-21t+54=0\Leftrightarrow t=6,t=\frac{9}{2}\)
Khi \(t=6\) ta có phương trình \(x+\frac{5}{x}=6\Leftrightarrow x^2-6x+5=0\Leftrightarrow x=1\) hoặc \(x=5\)
Khi \(t=\frac{9}{2}\) ta có phương trình \(x+\frac{5}{x}=\frac{9}{2}\Leftrightarrow2x^2-9x+10=0\Leftrightarrow x=2\) hoặc \(x=\frac{5}{2}\)
Vậy...
câu 3 Gọi vận tốc ban đầu là x(x>0)km/h
vân tốc tăng thêm khi đi 100km là x+10 km/h
thời gian đi hết 100km là \(\dfrac{100}{x}h\)
thời gian đi hết quãng đường còn lại là \(\dfrac{220-100}{x+10}h\)
vì tổng tg đi hết quãng đường AB là 4h nên ta có pt
\(\dfrac{100}{x} \)+\(\dfrac{220-100}{x+10}\)=4
giải pt x=50
vậy vận tốc ban đầu đi là 50 km/h
Gọi x (km/h) là vận tốc ban đầu của ô tô (x > 0)
\(\Rightarrow\) x + 10 (km/h) là vận tốc lúc sau của ô tô
Thời gian đi 100 km đầu là: \(\dfrac{100}{x}\) (h)
Thời gian đi hết quãng đường còn lại là: \(\dfrac{220-100}{x+10}=\dfrac{120}{x+10}\) (h)
Theo đề bài ta có phương trình:
\(\dfrac{100}{x}+\dfrac{120}{x+10}=4\)
\(\Leftrightarrow100\left(x+10\right)+120x=4x\left(x+10\right)\)
\(\Leftrightarrow100x+1000+120x=4x^2+40x\)
\(\Leftrightarrow4x^2+40x-220x-1000=0\)
\(\Leftrightarrow4x^2-180x-1000=0\)
\(\Leftrightarrow x^2-45x-250=0\)
\(\Delta=\left(-45\right)^2-4.1.\left(-250\right)=3025\)
\(\Rightarrow\Delta=55\)
\(x_1=\dfrac{-\left(-45\right)+55}{2.1}=50\) (nhận)
\(x_2=\dfrac{-\left(-45\right)-55}{2.1}=-5\) (loại)
Vậy vận tốc ban đầu của ô tô là 50 km/h
Em dùng công thức toán học hoặc viết ra giấy, chụp ảnh rồi up lên chứ thế này cô không đúng đề bài để giúp em được.
2\(\sqrt{\dfrac{16}{3}}\) - 3\(\sqrt{\dfrac{1}{27}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{3}{3\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{1}{\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{16}{2\sqrt{3}}\) - \(\dfrac{2}{2\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{11}{2\sqrt{3}}\)
= \(\dfrac{11\sqrt{3}}{6}\)
f, 2\(\sqrt{\dfrac{1}{2}}\)- \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{2}{\sqrt{2}}\) - \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{5\sqrt{2}}{4}\)
(1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1- \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))
= \(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3+\sqrt{3}}{\sqrt{3}+1}\)
= \(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)
= \(\dfrac{-4}{3-1}\)
= \(\dfrac{-4}{2}\)
= -2
Bài 1:
a: \(\sqrt{x-1}+2\sqrt{9x-9}-14=0\)
\(\Leftrightarrow7\sqrt{x-1}=14\)
\(\Leftrightarrow x-1=4\)
hay x=5
\(2x^4-21x^3+74x^2-105x+50=0\)
\(< =>2x^4-10x^3-11x^3+55x^2+19x^2-95x^2-10x+50=0\)
\(< =>2x^3\left(x-5\right)-11x^2\left(x-5\right)+19x\left(x-5\right)-10\left(x-5\right)=0\)
\(< =>\left(x-5\right).\left(2x^3-11x^2+19x-10\right)=0\)
\(< =>\left(x-5\right).\left(2x^3-2x^2-9x^2+9x+10x-10\right)=0\)
\(< =>\left(x-5\right).\left(x-1\right).\left(2x^2-9x+10\right)=0\)
\(2x^2-9x+10\ge0\)
\(< =>x=5\)hoặc \(x=1\)
Vậy S = 1 hoặc 5