Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)A=[2\sqrt{3}+2-2\sqrt{3}+2]/[(2\sqrt{3}-2)(2\sqrt{3}+2)]`
`A=4/[12-4]=1/2`
Với `x > 0,x ne 1` có:
`B=[x-2\sqrt{x}+1]/[\sqrt{x}(\sqrt{x}-1)]`
`B=[(\sqrt{x}-1)^2]/[\sqrt{x}(\sqrt{x}-1)]=[\sqrt{x}-1]/\sqrt{x}`
`b)B=2/5A`
`=>[\sqrt{x}-1]/\sqrt{x}=2/5 . 1/2`
`<=>5\sqrt{x}-5=\sqrt{x}`
`<=>\sqrt{x}=5/4`
`<=>x=25/16` (t/m)
a: Khi x=9 thì A=(9-2)/(3+2)=7/5
b: \(B=\dfrac{x-\sqrt{x}+2\sqrt{x}+2-4}{x-1}=\dfrac{x+\sqrt{x}-2}{x-1}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)
c: P=A*B
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\cdot\dfrac{x-2}{\sqrt{x}+2}=\dfrac{x-2}{\sqrt{x}+1}\)
P=7/4
=>(x-2)/(căn x+1)=7/4
=>4x-8=7căn 7+7
=>4x-7căn x-15=0
=>căn x=3(nhận) hoặc căn x=-5/4(loại)
=>x=9
a) Với x>=0,x khác 1, ta có:
\(C=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{\left(x+1\right)^2}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\frac{-\sqrt{x}-2-\sqrt{x}+2}{\left(x-1\right)\left(x+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(x+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\sqrt{x}\left(1-\sqrt{x}\right)\)
\(=\sqrt{x}-x\)
b) Không làm được
c)\(\sqrt{x}-x=-\left(x-\sqrt{x}+\frac{1}{4}-\frac{1}{4}\right)=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì\(-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\left(\forall x\right)\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi và chỉ khi:\(\sqrt{x}-\frac{1}{2}=0\Rightarrow x=\frac{1}{4}\)
Vậy Max A=\(\frac{1}{4}\)tại x=\(\frac{1}{4}\)
\(B=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)
a) ĐK: \(x\ne1,x\ge0\)
\(B=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)
\(B=\left[\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(B=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(B=\left[\dfrac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(B=\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2}{2}\)
\(B=-\sqrt{x}\left(\sqrt{x}-1\right)\)
\(A=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{2x-6\sqrt{x}+x+\sqrt{x+}3\sqrt{x}+3+3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{3x-13\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
Lời giải:
ĐKXĐ: $x>0; x\neq 1$
\(P=\frac{1}{\sqrt{x}+1}+\frac{x}{\sqrt{x}(1-\sqrt{x})}=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\)
\(=\frac{1-\sqrt{x}+\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(1-\sqrt{x})}=\frac{x+1}{1-x}\)
b. Khi $x=\frac{1}{\sqrt{2}}$ thì:
\(P=\frac{\frac{1}{\sqrt{2}}+1}{1-\frac{1}{\sqrt{2}}}=3+2\sqrt{2}\)
a: Thay x=36 vào B, ta được:
\(B=\dfrac{36+2}{36+6+1}=\dfrac{38}{43}\)
b: Ta có: \(A=\dfrac{1}{\sqrt{x}-1}-\dfrac{x-\sqrt{x}+3}{x\sqrt{x}-1}\)
\(=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)