K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2023

a: Ta có: ΔODE cân tại O

mà OK là đường cao

nên K là trung điểm của DE

Xét tứ giác CDBE có

K là trung điểm chung của CB và DE

=>CDBE là hình bình hành

Hình bình hành CDBE có CB\(\perp\)DE

nên CDBE là hình thoi

b: Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó;ΔADB vuông tại D

=>AD\(\perp\)DB

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

=>AE\(\perp\)EB

Xét (I) có

ΔCMA nội tiếp

CA là đường kính

Do đó: ΔCMA vuông tại M

Xét (I) có

ΔCNA nội tiếp

AC là đường kính

Do đó: ΔCNA vuông tại N

Ta có: AM\(\perp\)DC

DC//EB

Do đó: AM\(\perp\)EB

Ta có: AM\(\perp\)EB

AE\(\perp\)EB

AM,AE có điểm chung là A

Do đó: M,A,E thẳng hàng

Ta có: AD\(\perp\)DB

AN\(\perp\)CE

DB//CE

AD,AN có điểm chung là A

Do đó: D,A,N thẳng hàng

Xét ΔCME vuông tại M và ΔCND vuông tại N có

\(\widehat{MCE}\) chung

Do đó: ΔCME đồng dạng với ΔCND

=>\(\dfrac{CM}{CN}=\dfrac{CE}{CD}\)

=>\(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)

Xét ΔCMN và ΔCED có

\(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)

\(\widehat{MCN}\) chung

Do đó: ΔCMN đồng dạng với ΔCED

=>\(\widehat{CMN}=\widehat{CED}\)

mà \(\widehat{CMN}+\widehat{DMN}=180^0\)(hai góc kề bù)

nên \(\widehat{DMN}+\widehat{CED}=180^0\)

=>DMNE là tứ giác nội tiếp

=>D,M,N,E cùng thuộc một đường tròn

 

16 tháng 1 2021

a) Vì đường tròn (O) và (O') tiếp xúc ngoài tại A nên O, A và O’ thẳng hàng.

Ta có: MB = MC (M là TĐ của BC)

Xét (O) ta có: DE vg góc BC (gt)

mà M là TĐ của BC

Suy ra : M là TĐ của DE ( đường kính vuông góc với dây cung)

Xét TG  BDCE có  2 đường chéo DE và BC cắt nhau tại trung điểm M của mỗi đường

Suy ra: BDCE là hình bình hành.

 

16 tháng 1 2021

(Bổ sung)

Lại có: BC ⊥ DE

Suy ra tứ giác BDCE là hình thoi 

15 tháng 12 2023

a: Xét (O) có

MA,MC là các tiếp tuyến

Do đó: MA=MC

=>M nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra MO là đường trung trực của AC

=>MO\(\perp\)AC tại H và H là trung điểm của AC

Xét (O) có

NC,NB là các tiếp tuyến

Do đó:NC=NB

=>N nằm trên đường trung trực của CB(3)

Ta có: OC=OB

=>O nằm trên đường trung trực của CB(4)

Từ (3) và (4) suy ra ON là đường trung trực của CB

=>ON\(\perp\)CB tại K và K là trung điểm của CB

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét tứ giác CHOK có

\(\widehat{CHO}=\widehat{CKO}=\widehat{KCH}=90^0\)

=>CHOK là hình chữ nhật

b: Ta có: \(\widehat{CAO}+\widehat{HOA}=90^0\)(ΔOHA vuông tại H)

\(\widehat{CAO}+\widehat{MAC}=\widehat{MAO}=90^0\)

Do đó: \(\widehat{HOA}=\widehat{MAC}=90^0-\widehat{CAO}=60^0\)

Xét ΔMOA vuông tại A có \(tanMOA=\dfrac{MA}{AO}\)

=>\(\dfrac{MA}{6}=tan60=\sqrt{3}\)

=>\(MA=6\sqrt{3}\left(cm\right)\)

c: Ta có: CHOK là hình chữ nhật

=>\(\widehat{HOK}=90^0\)

=>\(\widehat{MON}=90^0\)

Xét ΔMON vuông tại O có OC là đường cao

nên \(CM\cdot CN=OC^2\)

mà CM=MA và CN=NB

nên \(AM\cdot BN=OC^2=R^2\) không đổi

Bài 1:Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:a) Góc AHN = ACBb) Tứ giác BMNC nội tiếp.c) Điểm I là trực tâm tam giác APQ.Bài 2:Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là...
Đọc tiếp

Bài 1:

Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:

a) Góc AHN = ACB

b) Tứ giác BMNC nội tiếp.

c) Điểm I là trực tâm tam giác APQ.

Bài 2:

Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:

a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.

b) KN là tiếp tuyến của đường tròn (O; R).

c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.

 

0
Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc vớiGọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại KXác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo RBài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ...
Đọc tiếp

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất

1

Bài 4:

a: 

Xét (O) có

ΔCED nội tiếp

CD là đường kính

=>ΔCED vuông tại E

ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

Xét tứ giác CEMF có

I là trung điểm chung của CM và EF

CM vuông góc EF

=>CEMF là hình thoi

=>CE//MF

=<MF vuông góc ED(1)

Xét (O') có

ΔMPD nội tiêp

MD là đường kính

=>ΔMPD vuông tại P

=>MP vuông góc ED(2)

Từ (1), (2) suy ra F,M,P thẳng hàng

b: góc IPO'=góc IPM+góc O'PM

=góc IEM+góc O'MP

=góc IEM+góc FMI=90 độ

=>IP là tiếp tuyến của (O')