Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề hơn nhé.
a: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{\left(5+2\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)
b: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
a/ \(\left(\sqrt{18}\right)^2-2\cdot\sqrt{18}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{18}-\sqrt{3}\right)^2\)
b/\(\left(\sqrt{54}\right)^2-2\cdot\sqrt{54}+1=\left(\sqrt{54}-1\right)^2\)
c/\(\left(\sqrt{9}\right)^2-2\cdot\sqrt{9}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{9}-\sqrt{5}\right)^2\)
d/\(\left(\sqrt{8}\right)^2+2\cdot\sqrt{8}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{8}+\sqrt{5}\right)^2\)
a) \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|+\left|\sqrt{5}+\sqrt{2}\right|\)
\(=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}\)
\(=\sqrt{5}+\sqrt{5}\)
\(=2\sqrt{5}\)
b) \(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)
\(=\left|\sqrt{2}-1\right|-\left|\sqrt{2}-5\right|\)
\(=\sqrt{2}-1-\left(5-\sqrt{2}\right)\)
\(=\sqrt{2}-1-5+\sqrt{2}\)
\(=2\sqrt{2}-6\)
\(=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}+1\right)\)
=(1-căn 5)(1+căn 5)
=1-5
=-4
\(\left(1+\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right)\left(\dfrac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)
\(=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}+1\right)\)
\(=\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\)
\(=1^2-\left(\sqrt{5}\right)^2\)
\(=1-5\)
\(=-4\)
\(\dfrac{1}{1-\sqrt{5}}+\dfrac{1}{\sqrt{5}-1}=\dfrac{-1+1}{\sqrt{5}-1}=\dfrac{0}{\sqrt{5}-1}=0\)
\(\dfrac{1}{1-\sqrt{5}}+\dfrac{1}{\sqrt{5}-1}=\dfrac{1}{1-\sqrt{5}}-\dfrac{1}{1-\sqrt{5}}=0\)
viết này thì sao biết được bạn