K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2022

Bạn có thể hướng dẫn giúp mình ko? Mình cảm ơn nhiều

NV
9 tháng 1 2022

\(A\cap B=\varnothing\Leftrightarrow2m-7\le13m+1\)

\(\Leftrightarrow11m\ge-8\Rightarrow m\ge-\dfrac{8}{11}\)

\(\Rightarrow\) Số nguyên m nhỏ nhất là \(m=0\)

NV
10 tháng 1 2022

Hàm bậc 2 có \(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=6-m\end{matrix}\right.\) nên nghịch biến trên khoảng \(\left(-\infty;6-m\right)\)

Hàm nghịch biến trên khoảng đã cho khi:

\(6-m\ge2\Rightarrow m\le4\)

\(\Rightarrow\) Có 4 giá trị nguyên dương của m

19 tháng 2 2022

undefined

19 tháng 5 2021

Vì \(\pi< \alpha< \dfrac{3\pi}{2}\) \(\Rightarrow\dfrac{\pi}{2}< \dfrac{\alpha}{2}< \dfrac{3\pi}{4}\)

\(\Rightarrow sin\dfrac{\alpha}{2}>0;cos\dfrac{\alpha}{2}< 0\)

\(\pi< \alpha< \dfrac{3\pi}{2}\Rightarrow cos\alpha< 0\)

\(\Rightarrow cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{3}{5}\)

Có \(sin^2\dfrac{\alpha}{2}=\dfrac{1-cosa}{2}=\dfrac{4}{5}\Rightarrow sin\dfrac{\alpha}{2}=\sqrt{\dfrac{4}{5}}=\dfrac{2\sqrt{5}}{5}\)

\(cos^2\dfrac{\alpha}{2}=\dfrac{1+cosa}{2}=\dfrac{1}{5}\Rightarrow cos\dfrac{\alpha}{2}=-\sqrt{\dfrac{1}{5}}=-\dfrac{\sqrt{5}}{5}\)

\(tan\dfrac{\alpha}{2}=\dfrac{sin\dfrac{\alpha}{2}}{cos\dfrac{\alpha}{2}}=-2\)

\(cot\dfrac{\alpha}{2}=-\dfrac{1}{2}\)

 

Câu 24: A

 

NV
16 tháng 4 2021

17.

\(f\left(x\right)>0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\left(luôn-đúng\right)\\\Delta'=\left(2m-1\right)^2-\left(3m^2-2m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2-2m-3< 0\)

\(\Leftrightarrow-1< m< 3\)

\(\Rightarrow m=\left\{0;1;2\right\}\)

18.

\(\pi< x< \dfrac{3\pi}{2}\Rightarrow cosx< 0\)

\(\Rightarrow cosx=-\sqrt{1-sin^2x}=-\dfrac{\sqrt{5}}{3}\)

\(\Rightarrow tanx=\dfrac{sinx}{cosx}=\dfrac{2\sqrt{5}}{5}\)

\(tan\left(x+\dfrac{\pi}{4}\right)=\dfrac{tanx+tan\dfrac{\pi}{4}}{1-tanx.tan\dfrac{\pi}{4}}=\dfrac{\dfrac{2\sqrt{5}}{5}+1}{1-\dfrac{2\sqrt{5}}{5}.1}=9+4\sqrt{5}\)

NV
16 tháng 4 2021

19.

\(a^2=b^2+c^2+bc\Rightarrow b^2+c^2-a^2=-bc\)

\(\Rightarrow cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{-bc}{2bc}=-\dfrac{1}{2}\)

\(\Rightarrow A=120^0\)

20.

Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=2\)

\(d\left(I;\Delta\right)=\dfrac{\left|2-1-3\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\)

Gọi H là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}IH=d\left(I;\Delta\right)\\AH=\dfrac{1}{2}AB\end{matrix}\right.\)

Áp dụng định lý Pitago trong tam giác vuông IAH:

\(IA^2=IH^2+AH^2\Leftrightarrow R^2=IH^2+AH^2\)

\(\Rightarrow AH=\sqrt{2}\Rightarrow AB=2AH=2\sqrt{2}\)

TL
9 tháng 8 2021

undefined

10 tháng 12 2021

Câu 28: C