K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1

a: ĐKXĐ: \(n\ne4\)

Để A nguyên thì \(3n+9⋮n-4\)

=>\(3n-12+21⋮n-4\)

=>\(21⋮n-4\)

=>\(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

b: ĐKXĐ: n<>1/2

Để B nguyên thì \(6n+5⋮2n-1\)

=>\(6n-3+8⋮2n-1\)

=>\(8⋮2n-1\)

mà 2n-1 lẻ(do n nguyên)

nên \(2n-1\in\left\{1;-1\right\}\)

=>\(n\in\left\{1;0\right\}\)

Bài 2:

a: \(\left|x-\dfrac{1}{2}\right|>=0\forall x\)

=>\(-\dfrac{1}{2}\left|x-2\right|< =0\forall x\)

=>\(A=-\dfrac{1}{2}\left|x-2\right|+\dfrac{3}{2}< =\dfrac{3}{2}\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(\left|\dfrac{1}{2}-x\right|>=0\forall x\)

=>\(-2,3\left|\dfrac{1}{2}-x\right|< =0\forall x\)

=>\(D=-2,3\left|\dfrac{1}{2}-x\right|+2< =2\forall x\)

Dấu '=' xảy ra khi 1/2-x=0

=>x=1/2

3 tháng 7

Bài 1: 

\(A=\dfrac{3n+9}{n-4}=\dfrac{3n-12}{n-4}+\dfrac{21}{n-4}=3+\dfrac{21}{n-4}\)

Để A nguyên thì \(\dfrac{21}{n-4}\) phải nguyên hay \(\left(n-4\right)\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\) (thoả mãn điều kiện)

Vậy...

\(B=\dfrac{6n+5}{2n-1}=\dfrac{6n-3}{2n-1}+\dfrac{8}{2n-1}=3+\dfrac{8}{2n-1}\)

Để B nguyên thì \(\dfrac{8}{2n-1}\) phải nguyên hay \(\left(2n-1\right)\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

Mặt khác: Vì n nguyên nên 2n-1 là số lẻ

Do đó: \(\left(2n-1\right)\in\left\{1;-1\right\}\)

\(\Rightarrow n\in\left\{1;0\right\}\)

Vậy....

Trả lời:

Bài 1 : \(\text{(3x - 5)=4}\)

         \(\text{3x - 5=4}\)

         \(\text{3x =4+5}\)

         \(\text{3x =9}\)

          \(x=\frac{9}{3}\)

         \(x=3\)

Vậy    \(x=3\)

~ Học tốt ~

Bài 2:

a) A = \(\frac{3n+9}{n-4}\)

Để \(\frac{3n+9}{n-4}\) có giá trị là 1 số nguyên thì:

\(3n+9⋮n-4\)

hay \(3n-12+21⋮n-4\)

  \(3.\left(n-4\right)+21⋮n-4\)

\(\Rightarrow21⋮n-4\) ( vì \(3.\left(n-4\right)⋮n-4\)

\(\Rightarrow n-4\in\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

Vậy   \(n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

~ Học tốt ~

6 tháng 7 2016

2.

\(\frac{3n+9}{n-4}\in Z\)

\(\Rightarrow3n+9⋮n-4\)

\(\Rightarrow3n-12+21⋮n-4\)

\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)

\(\Rightarrow21⋮n-4\)

\(\Rightarrow n-4\inƯ\left(21\right)\)

\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)

\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)

\(B=\frac{6n+5}{2n-1}\in Z\)

\(\Rightarrow6n+5⋮2n-1\)

\(\Rightarrow6n-3+8⋮2n-1\)

\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)

\(\Rightarrow8⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(8\right)\)

\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)

\(n\in Z\)

\(\Rightarrow n\in\left\{0;1\right\}\)

 

23 tháng 6 2016

Toán lớp 7

23 tháng 6 2016

Toán lớp 7

vậy để B nguyên thì n\(\in\) {-17;-3;1;3;5;7;11;25}

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

23 tháng 9 2015

A=\(\frac{3n+9}{n-4}\)=\(\frac{3\left(n-4\right)+12+9}{n-4}=\frac{3\left(n-4\right)+21}{n-4}\)
Vì n-4 : hết cho n-4 => 3(n-4) chia hết cho n-4=> để A nguyên => 21 chia hết cho n-4
n-4 thuộc Ư(21)=> n-4 thuộc {-21;-7;-3;-1;1;3;7;21} =>n thuộc {-17;-3;1;3;5;7;25} 

21 tháng 3 2016

tsfđgggggggggg

16 tháng 7 2021

a) A = \(\dfrac{6n+7}{2n+3}\) = \(\dfrac{6n+9}{2n+3}\) − \(\dfrac{2}{2n+3}\) nguyên

⇔ 2n + 3 ∈ Ư(2) = {-2; -1; 1; 2}

⇔ 2n ∈ {-5; -4; -2; -1}

Vì n nguyên nên n ∈ {-2; -1}

16 tháng 7 2021

undefined

8 tháng 7 2016

\(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)

\(\Rightarrow n-4\inƯ\left(21\right)\Rightarrow n-4\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

\(\Rightarrow n\in\left\{-17;3;1;3;5;7;11;25\right\}\)

( giá trị là chỗ n-4 \(\in\){ -21;-7;...;21 } rồi + 3 nha bạn )

\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{-1;1\right\}\)( vì 2n - 1 là số lẻ )

\(\Rightarrow n\in\left\{0;1\right\}\)

( giá trị là chỗ 2n-1 \(\in\){ -1;1 } rồi + 3 nha bạn )

8 tháng 7 2016
  • \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)

Để A nguyên thì \(\frac{21}{n-4}\) nguyên

=>21 chia hết cho n-4

=>n-4\(\in\)Ư(21)

=>n-4\(\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

=>n\(\in\left\{-17;-3;1;3;5;7;11;25\right\}\)(1)

  • \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)

Để B nguyên thì \(\frac{8}{2n-1}\) nguyên

=>8 chia hết cho 2n-1

=>2n-1\(\in\)Ư(8)

=>2n-1\(\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

=>2n\(\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)

=>n\(\in\left\{\frac{-7}{2};\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2};\frac{9}{2}\right\}\)

Vì n là số nguyên nên n\(\in\left\{0;1\right\}\)(2)

Từ (1) và (2) => n=1 thì A và B nguyên

n=1 => \(A=3+\frac{21}{n-4}=3+\frac{21}{1-4}=3+\frac{21}{-3}=3+\left(-7\right)=-4\)

           \(B=3+\frac{8}{2n-1}=3+\frac{8}{2.1-1}=3+\frac{8}{1}=3+8=11\)

Kết luận:n=1 thì A=-4 và B=11