Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5) \(\sqrt{x+1}+\sqrt{2x+3}=x^2-x-1\) (ĐKXĐ: \(x\ge-1\))
<=>\(\left(\sqrt{x+1}-2\right)+\left(\sqrt{2x+3}-3\right)-\left(x^2-x-6\right)=0\)
<=>\(\dfrac{x-3}{\sqrt{x+1}+2}+\dfrac{2\left(x-3\right)}{\sqrt{2x+3}+3}-\left(x-3\right)\left(x+2\right)=0\)
<=>\(\left(x-3\right)\left(\dfrac{1}{\sqrt{x+1}+2}+\dfrac{2}{\sqrt{2x+3}+3}-x-2\right)=0\)
<=>\(\left[{}\begin{matrix}x-3=0\left(1\right)\\\dfrac{1}{\sqrt{x+1}+2}+\dfrac{2}{\sqrt{2x+3}+3}-x-2=0\left(2\right)\end{matrix}\right.\)
Giải (1) được x=3 thỏa mãn ĐKXĐ.
Giải (2): Từ \(x\ge-1\) ta có:
\(\sqrt{x+1}+2\ge2\), \(\sqrt{2x+3}+3\ge\sqrt{1}+3=4\), \(-x\le1\), từ đó:
VT(2)\(\le\dfrac{1}{2}+\dfrac{2}{4}+1-2=0\).
Như vậy để (2) xảy ra thì x=\(-1\), thỏa mãn ĐKXĐ.
Vậy \(S=\left\{-1;3\right\}\).
Yoo Ahn Jang: Bạn gõ lại hoặc xoay lại hình trước khi up đi, Như thế này thì mọi người không đọc được để mà trả lời giúp bạn ấy.
c/ \(y=\sqrt[3]{\frac{3x+1}{x^2-1}}\)
Tập xác định \(D=R\backslash\left\{\pm1\right\}\)
d/ \(y=\frac{\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}}{\sqrt{x^2-x+1}}=\frac{\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}}{\sqrt{x^2-x+\frac{1}{4}+\frac{3}{4}}}=\frac{\left|x-2\right|+\left|x-3\right|}{\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}}\)
Suy ra tập xác định D = R
e/ \(y=\frac{1}{x^2+5x+6}=\frac{1}{\left(x+3\right)\left(x+2\right)}\) . Để y xác định thì \(\left(x+3\right)\left(x+2\right)\ne0\) => x khác -2 và -3
Suy ra tập xác định : \(D=R\backslash\left\{-2;-3\right\}\)
b/ \(y=\sqrt{x^2-2x+1}+\sqrt{x-3}+\sqrt{4-x}+1\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{x-3}+\sqrt{4-x}+1\)
\(=\left|x-1\right|+\sqrt{x-3}+\sqrt{4-x}+1\)
Để y xác định thì \(\begin{cases}x-3\ge0\\4-x\ge0\end{cases}\) \(\Rightarrow3\le x\le4\)
Vậy tập xác định là thuộc đoạn \(\left[3;4\right]\)