Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\overrightarrow{AB}=\left(-3;-2\right)\)
\(\overrightarrow{AC}=\left(1;-4\right)\)
Vì \(\overrightarrow{AB}< >\overrightarrow{AC}\) nên A,B,C ko thẳng hàng
hay A,B,C lập thành 1 tam giác
b: Gọi M là trung điểm của BC
\(\Leftrightarrow\left\{{}\begin{matrix}x_M=\dfrac{2-\left(-2\right)}{2}=2\\y_M=\dfrac{-1-1}{2}=-1\end{matrix}\right.\)
Vậy: M(2;-1)
A(1;3)
\(AM=\sqrt{\left(2-1\right)^2+\left(-1-3\right)^2}=\sqrt{17}\)
\(\Leftrightarrow4x^2=x+2+2\sqrt{x+2}+1\)
\(\Leftrightarrow\left(\sqrt{x+2}+1\right)^2=\left(2x\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+2}+1=2x\\\sqrt{x+2}+1=-2x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+2}=2x-1\left(x\ge\dfrac{1}{2}\right)\\\sqrt{x+2}=-2x-1\left(x\le-\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2=4x^2-4x+1\left(x\ge\dfrac{1}{2}\right)\\x+2=4x^2+4x+1\left(x\le-\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{41}}{8}\\x=-1\end{matrix}\right.\)
Do 1 số tự nhiên a chia cho 4 có các số dư là 0;1;2;3 ⇒ a sẽ có các dạng 4m; 4m +1
4m + 2 và 4m + 3 (m ∈ N). Với a = 4m ⇒ a² = 16m² = 4.4m² - có dạng 4k.
Với a = 4m + 1 ⇒ a² = (4m + 1)² = 16m² + 8m + 1 = 4(4m² + 2m) + 1 - có dạng 4k + 1
Với a = 4m + 2 ⇒ a² = (4m + 2)² = 16m² + 8m + 4 = 4(4m² + 2m + 1) - có dạng 4k
Với a = 4m + 3, lam tương tự ... a² = 4(4m² + 2m + 2) + 1 - có dạng 4k + 1
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=\left|\overrightarrow{AC}\right|=AC=\sqrt{BC^2-AB^2}=4\)
Ý B
Đặt y = f(x) = - 2x2 có đồ thị (C)
và y = g(x) = - 2x2 - 6x + 3 có đồ thị (C')
Ta có :
g(x) = - 2x2 - 6x + 3
= - 2\(\left(x^2+3x-\dfrac{3}{2}\right)\)
= - 2\(\left(x+\dfrac{3}{2}\right)^2\) + \(\dfrac{15}{2}\)
= \(f\left(x+\dfrac{3}{2}\right)+\dfrac{15}{2}\)
Vậy tịnh tiến (C) sang trái \(\dfrac{3}{2}\) đơn vị rồi kéo (C) lên trên \(\dfrac{15}{4}\) đơn vị ta được (C')
C,D thuộc (P) nên \(C\left(x_1;x_1^2-4x_1-5\right);D\left(x_2;x_2^2-4x_2-5\right)\)
ABCD là hình bình hành
=>\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\overrightarrow{AB}=\left(3;-4\right);\overrightarrow{DC}=\left(x_1-x_2;x_1^2-4x_1-5-x_2^2+4x_2+5\right)\)
=>\(\left\{{}\begin{matrix}x_1-x_2=3\\x_1^2-x_2^2-4x_1+4x_2=-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_1-x_2=3\\\left(x_1-x_2\right)\left(x_1+x_2-4\right)=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=3\\x_1+x_2-4=-\dfrac{4}{x_1-x_2}=-\dfrac{4}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_1-x_2=3\\x_1+x_2=-\dfrac{4}{3}+4=\dfrac{12}{3}-\dfrac{4}{3}=\dfrac{8}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x_1=3+\dfrac{8}{3}=\dfrac{17}{3}\\x_1+x_2=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{17}{6}\\x_2=\dfrac{8}{3}-\dfrac{17}{6}=-\dfrac{1}{6}\end{matrix}\right.\)
Khi x=17/6 thì \(y=x^2-4x-5=\left(\dfrac{17}{6}\right)^2-4\cdot\dfrac{17}{6}-5=-\dfrac{299}{36}\)
Khi x=-1/6 thì \(y=\left(-\dfrac{1}{6}\right)^2-4\cdot\dfrac{-1}{6}-5=\dfrac{1}{36}+\dfrac{2}{3}-5=-\dfrac{155}{36}\)
Vậy: \(C\left(\dfrac{17}{6};-\dfrac{299}{36}\right);D\left(-\dfrac{1}{6};-\dfrac{155}{36}\right)\)
Câu 1:
\(\left(4x+3\right)\left(3x^2+x-2\right)\left(2x^2-3x-5\right)=0\\ \Leftrightarrow\left(4x+3\right)\left(3x-2\right)\left(x+1\right)\left(2x-5\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=-1\\x=\dfrac{2}{3}\\x=\dfrac{5}{2}\end{matrix}\right.\\ \Leftrightarrow A=\left\{-1;-\dfrac{3}{4};\dfrac{2}{3};\dfrac{5}{2}\right\}\)
Câu 2:
\(\left(x^2-4\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=3\end{matrix}\right.\Leftrightarrow A=\left\{-2;2;3\right\}\\ \left|5x\right|-11\le0\Leftrightarrow\left|5x\right|\le11\Leftrightarrow-11\le5x\le11\\ \Leftrightarrow-\dfrac{11}{5}\le x\le\dfrac{11}{5}\\ \Leftrightarrow B=\left[-\dfrac{11}{5};\dfrac{11}{5}\right]\)
\(\Leftrightarrow A\cap B=\left\{-2;2\right\}\\ A\cup B=\left[-\dfrac{11}{5};3\right]\\ A\B=\left\{3\right\}\)