Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số được điền vào các ô theo thứ tự từ trái sang phải là:
-1; - \(\dfrac{1}{3}\); \(\dfrac{2}{3}\); \(\dfrac{4}{3}\)
Bài 3.
$3(-4x^2y^2)y=3(-4).x^2y^2.y=-12x^2y^{2+1}=-12x^2y^3$
Đáp án C
Bài 4.
$(-2xy^3).(-4x^2y)=(-2).(-4).x.x^2.y^3.y=8x^3y^4$
$-2xy(-4x^2y^2)=(-2)(-4).x.x^2.y.y^2=8x^3y^3$ nên đơn thức A không đồng dạng với đơn thức ban đầu.
$x^2y(-8x^2y^2)=-8x^4y^3$ nên đơn thức D không đồng dạng với đơn thức ban đầu.
a: M=2x^3-x^3+5x^2-3x^2+1-2
=x^3+2x^2-1
b: Bậc là 3
c: Khi x=2 thì M=2^3+2*2^2-1=15
a) Xét tam giác ABM và tam giác ACM:
+ AB = AC (gt).
+ AM chung.
+ \(\widehat{BAM}=\widehat{CAM}\) (AM là phân giác).
\(\Rightarrow\) Tam giác ABM = Tam giác ACM (c - g - c).
b) Xét tam giác ABC: AB = AC (gt).
\(\Rightarrow\) Tam giác ABC cân tại A.
Mà AM là phân giác (gt).
\(\Rightarrow\) AM là trung tuyến; AM là đường cao (Tính chất tam giác cân).
\(\Rightarrow\) M là trung điểm của BC; \(AM\perp BC\) (đpcm).
\(a,\left\{{}\begin{matrix}AB=CD\\AD=BC\\AC\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.c.c\right)\\ b,\Delta ABC=\Delta CDA\left(\text{cm trên}\right)\\ \Rightarrow\left\{{}\begin{matrix}\widehat{BAC}=\widehat{ACD}\Rightarrow AB\text{//}CD\\\widehat{DAC}=\widehat{ACB}\Rightarrow AD\text{//}BC\end{matrix}\right.\)
Bài 1 :
Thay x = 2 ; y = -1/2 ta được
\(B=-8+2.4\left(-\dfrac{1}{2}\right)-4.2.\left(\dfrac{1}{4}\right)+2\left(-\dfrac{1}{2}\right)-3\)
\(=-8-4-2-1-3=-18\)