![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta thấy:
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+......+\frac{1}{200}\)
(Có 100 số hạng \(\frac{1}{200}\))
\(=\frac{1\cdot100}{200}=\frac{100}{200}=\frac{1}{2}\)
Lại có:
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{200}< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+......+\frac{1}{100}\)
(Có 100 số hạng \(\frac{1}{100}\))
\(=\frac{1\cdot100}{100}=\frac{100}{100}=1\)
Vậy tổng A lớn hơn \(\frac{1}{2}\)nhưng bé hơn \(1\).
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.1/b-1/(b+1)=(b+1-b)/b.(b+1)=1/b.(b+1)<1/b.b=1/b^2
chứng minh = quy đồng tương tự ha!
2.giờ thứ 2 đi đc:1/3-1/12=1/4 quãng đường
giờ thứ 3 đi đc:1/4-1/12=1/6 quãng đường
giờ thứ 4 đi đc :1-(1/3+1/4+1/6)=1/4 quãng đường
chúc học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow\) A < \(1+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow\) A < \(1+\left(1-\frac{1}{50}\right)\)
\(\Rightarrow\) A < 1 + 49/50
Mà 1+49/50 < 2 nên A < 1+49/50 < 2
\(\Rightarrow\) A < 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ
vậy p + 1 và p - 1 là hai số chẵn.
Mà p + 1 - (p - 1) = 2 nên p + 1 và p - 1 là hai số chẵn liên tiếp.
đặt p - 1 = 2k thì p + 1 = 2k + 2 (k \(\in\) N*)
A = (p + 1).(p - 1) = (2k + 2).2k = 2.(k + 1).2k = 4.k.(k +1)
Vì k và k + 1 là hai số tự nhiên liên tiếp nên chắc chẵn phải có một số chia hết cho 2.
⇒ 4.k.(k + 1) ⋮ 8
⇒ A = (p + 1).(p - 1) ⋮ 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng:
p = 3k + 1; hoặc p = 3k + 2
Xét trường hợp p = 3k + 1 ta có:
p - 1 = 3k + 1 - 1 = 3k ⋮ 3
⇒ A = (p + 1).(p - 1) ⋮ 3 (2)
Từ (1) và (2) ta có:
A ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23; ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) B(24) ⇒ A ⋮ 24 (*)
Xét trường hợp p = 3k + 2 ta có
p + 1 = 3k + 2 + 1 = 3k + 3 = 3.(k + 1) ⋮ 3 (3)
Từ (1) và (3) ta có:
A = (p + 1).(p - 1) ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23 ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) BC(24) ⇒ A \(⋮\) 24 (**)
Kết hợp (*) và(**) ta có
A \(⋮\) 24 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
1
abc - cba = ( a x 100 + b x 10 + c ) - ( c x 100 + b x 10 + a ) = a x 99 + b x 10 - c x 99 + b x 10 = a x 99 - c x 99
Vì a x 99 chia hết cho 11 , c x 99 chia hết cho 11 nên abc - cba cũng chia hết cho 11
2
a ) abcdeg = ab x 10000 + cd x 100 + eg = a x 9999 + cd x 99 + ( ab + cd +eg )
Vì a x 9999 chia hết cho 11 , cd x 99 chia hết cho 11 , ab + cd +eg chia hết cho 11 ( theo đề ) nên abcdeg cũng chia hết cho 11
b ) CÂU NÀY MÌNH CHƯA NGHĨ RA NHA
![](https://rs.olm.vn/images/avt/0.png?1311)
Để chứng minh phân số tối giản, ta đặt ƯCLN của tử số và mẫu số là d
Từ đề bài ta có : \(2n+2⋮d\) và \(2n+1⋮d\)
\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\Leftrightarrow\left(2n+2-2n-1\right)⋮d\)
\(\Leftrightarrow\left(2n-2n\right)+\left(2-1\right)⋮d\Leftrightarrow\left(0+1\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vì ƯCLN của tử số và mẫu số là 1 nên hai số nguyên tố cùng nhau.
Hay \(\frac{2n+2}{2n+1}\) là phân số tối giản
1 chiếc đũa + 1 chiếc đũa =1 đôi đũa
1 chiếc dép +1 chiếc dép = 1 đôi dép