\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

Ta có: A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

      \(\Rightarrow\) A < \(1+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)

      \(\Rightarrow\) A < \(1+\left(1-\frac{1}{50}\right)\)

      \(\Rightarrow\) A < 1 + 49/50

Mà 1+49/50 < 2 nên A < 1+49/50 < 2

\(\Rightarrow\) A < 2

18 tháng 4 2016

\(\frac{1}{3^2}<\frac{1}{3.4}\)

\(\frac{1}{4^2}<\frac{1}{4.5}\)

\(\frac{1}{5^2}<\frac{1}{5.6}\)

\(...\)

\(\frac{1}{100^2}<\frac{1}{100.101}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{101}\)

Mà \(\frac{1}{3}<\frac{1}{2}\) nên \(\frac{1}{3}-\frac{1}{101}<\frac{1}{2}\)

hay \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{2}\)

17 tháng 4 2016

Đặt A=1/3^2+1/4^2+1/5^2+...+1/100^2

Suy raA<1/2*3+1/3*4+1/4*5+..+1/99*100

A<1/2-1/100<1/2

Ta có điều phải chứng minh.

24 tháng 3 2019

1) Tìm x

\(\frac{11}{2}.x+\frac{1}{3}.x=1\)

\(\Rightarrow x\left(\frac{11}{2}+\frac{1}{3}\right)=1\)

\(\Rightarrow x\left(\frac{33}{6}+\frac{2}{6}\right)=1\)

\(\Rightarrow x.\frac{35}{6}=1\)

\(\Rightarrow x=\frac{6}{35}\)

2) So sánh

\(\frac{59}{40}< \frac{50}{31}\)( cái này bạn quy đồng là ra, mik chỉ ghi kq, bạn tự tính )

3)\(\frac{1}{3}+\frac{4}{7}-\frac{5}{14}-\frac{1}{2}-\frac{2}{3}\)

\(=\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{4}{7}-\frac{5}{14}\right)-\frac{1}{2}\)

\(=-\frac{1}{3}+\frac{3}{14}-\frac{1}{2}\)

\(=-\frac{13}{21}\)

24 tháng 3 2019

1)\(\frac{11}{2}.x+\frac{1}{3}.x=1\)

\(x.\left(\frac{11}{2}+\frac{1}{3}=1\right)\)

\(x.\frac{35}{6}=1\)

\(x=1:\frac{35}{6}\)

\(x=\frac{6}{35}\)

2) Ta có:

\(\frac{59}{40}=\frac{1829}{1240}\)

\(\frac{50}{31}=\frac{2000}{1240}\)

Vì \(2000>1829\Rightarrow\frac{2000}{1240}>\frac{1829}{1240}\Rightarrow\frac{50}{31}>\frac{59}{40}\)

3)\(\frac{1}{3}+\frac{4}{7}-\frac{5}{14}-\frac{1}{2}-\frac{2}{3}\)

\(=\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{4}{7}-\frac{5}{14}-\frac{1}{2}\right)\)

\(=-\frac{1}{3}+\left(\frac{8}{14}-\frac{5}{14}-\frac{7}{14}\right)\)

\(=\frac{-1}{3}+\frac{-4}{14}\)

\(=\frac{-1}{3}+\frac{-2}{7}\)

\(=\frac{-7}{21}+\frac{-6}{21}\)

\(=\frac{-13}{21}\)

4 tháng 4 2016

\(S=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{20^2}\)

\(S=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{20^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)

\(S<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)

\(S<\frac{1}{2}-\frac{1}{20}<\frac{1}{2}\)

Vậy \(S<\frac{1}{2}\)

4 tháng 4 2016

Cám ơn bạn rất nhiều hjhj

19 tháng 4 2016

câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008

ta có:\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)

\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}

19 tháng 4 2016

câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008

\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)

\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\( (1)

\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2007.2008}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)

\(=1-\frac{1}{2008}\)<1 (2)

mà 1<3 (3)

từ (1),(2) và (3)=> đpcm

8 tháng 5 2018

\(a)\frac{2}{3}x-\frac{1}{2}=\frac{5}{12}\)

\(\Rightarrow\frac{2}{3}x=\frac{5}{12}+\frac{1}{2}=\frac{11}{12}\)

\(\Rightarrow x=\frac{11}{12}:\frac{2}{3}=\frac{11}{8}\)

\(b)\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)

\(\Rightarrow\frac{14}{5}x-50=51.\frac{2}{3}=34\)

\(\Rightarrow\frac{14}{5}x=34+50=84\)

\(\Rightarrow x=84:\frac{14}{5}=30\)

8 tháng 5 2018

a) 2/3.x - 1/2 = 5/12

            2/3.x = 5/12 + 1/2

            2/3.x = 11/12

                  x = 11/12 : 2/3

                   x = 11/8

b) \(\left(2\frac{4}{5}.x-50\right):\frac{2}{3}=51\)

                  \(\frac{14}{5}.x-50=51.\frac{2}{3}\)

                   \(\frac{14}{5}.x-50=34\)

                                \(\frac{14}{5}.x=34+50\)

                                \(\frac{14}{5}.x=84\)

                                         \(x=84:\frac{14}{5}\)

                                         \(x=30\)