Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 t chỉ giải được khi x, y, z cùng dấu. Còn TH x, y, z không cùng dấu thì chưa nghĩ ra (Chắc là giả sử x, y đồng dấu rồi.. chăng?)
1/ Do \(x^2\left(x-1\right)^2\ge0\therefore\frac{x^2}{\left(x+1\right)^2}\ge\frac{3x^2}{4\left(x^2+x+1\right)}\)
Như vậy: \(VT\ge\frac{3}{4}\left(\frac{x^2}{x^2+x+1}+\frac{y^2}{y^2+y+1}+\frac{z^2}{z^2+z+1}\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{x^2}{x^2+x+1}+\frac{y^2}{y^2+y+1}+\frac{z^2}{z^2+z+1}\ge1\) (*) với xyz = 1.
Nếu \(x,y,z>0\) thì đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\) thu được BĐT Vacs.
Nếu \(\left(x,y,z\right)< 0\) thì đặt \(\left(x,y,z\right)\rightarrow\left(-m,-n,-p\right)\left(\text{với }m,n,p>0\right)\)
Cần chứng minh: \(\frac{m^2}{m^2-m+1}+\frac{n^2}{n^2-n+1}+\frac{p^2}{p^2-p+1}\ge1\)
Vì \(m,n,p\ge0\rightarrow VT\ge\frac{m^2}{m^2+m+1}+\frac{n^2}{n^2+n+1}+\frac{p^2}{p^2+p+1}\ge1\)
Đây là BĐT (*). Chứng minh tương tự.
tth_new Làm khó m rồi tth :)) thực ra đề thực dương mà t viết thiếu :))))
Cách làm khác mà ko dùng tới bổ đề Vacs
\(\frac{x^2}{\left(1+x\right)^2}+\frac{y^2}{\left(1+y\right)^2}+\frac{z^2}{\left(1+z\right)^2}\)
\(=\frac{1}{\left(\frac{1}{x}+1\right)^2}+\frac{1}{\left(\frac{1}{y}+1\right)^2}+\frac{1}{\left(\frac{1}{z}+1\right)^2}\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\)
Khi đó LHS trở thành:
\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}\)
Mặt khác theo Bunhiacopski ta có:
\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}\ge\frac{1}{\left(ab+1\right)\left(\frac{a}{b}+1\right)}+\frac{1}{\left(ab+1\right)\left(\frac{b}{a}+1\right)}=\frac{1}{ab+1}\)
Ta cần chứng minh \(\frac{1}{ab+1}+\frac{1}{\left(c+1\right)^2}=\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}-\frac{3}{4}\ge0\)
\(\Leftrightarrow\frac{\left(c-1\right)^2}{4\left(c+1\right)^2}\ge0\) ( đúng )
Nhớ không nhầm đây là VMO 2005 được nghệ An lấy lại đưa vào đề thi tỉnh nhưng với bậc cao hơn :))))
2.)\(x^3-10x+1=y^3+6y^2\)(1)
Đặt\(x=y+b\)với \(b\inℤ\).Ta có:
(1)\(\Leftrightarrow\)\(y^3+3y^2b+3yb^2+b^3+10y+10b-1=y^2+6y^2\)
\(\Leftrightarrow\)\(y^2\left(3b-6\right)+y\left(3b^2+10\right)+b^3+10b-1=0\)(1)
\(\Delta=\left(3b^2+10\right)^2-\left(12b-24\right)\left(b^3+10b-1\right)\ge0\)
\(=-3b^4+24b^3-60b^2+252b+76\)
\(=1399-3\left(b^2-4b\right)^2-3\left(2b-21\right)^2\ge0\)
Do đó:\(\left(b^2-4b^2\right)+\left(2b-21\right)^2\le466\)
Nhận thấy:\(\left(2b-21\right)^2\le466\)nên \(0\le b\le21\)
Theo phương trình ban đầu thì\(x,y\)khác tính chắn lẻ nên\(b\)lẻ:
Nếu\(b=1\)thì(1)\(\Leftrightarrow\)\(-3y^2+12y+10\Leftrightarrow y=5\Rightarrow x=6\)
Nếu\(b=3\)thì(1)\(\Leftrightarrow3y^2+37y+56=0,\)không có nghiệm nguyên
\(\Leftrightarrow\)Nếu\(b=5\)thì(1)\(\Leftrightarrow9y^2+85y+174=0\Leftrightarrow y=-3\Rightarrow x==2\)
\(\Leftrightarrow\)Nếu\(b=7\)thì(1)\(\Leftrightarrow\)\(15y^2+157y+412=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=11\)thì(1)\(\Leftrightarrow27y^2+373y+1440=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=13\)thì(1)\(\Leftrightarrow33y^2+517y+2326=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=15\)thì(1)\(\Leftrightarrow39y^2+685+3524=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=17\)thì(1)\(\Leftrightarrow45y^2+877y+5082=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=19\)thì(1)\(\Leftrightarrow51y^2+1093y+7048=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=21\)thì(1)\(\Leftrightarrow57y^2+442y+9479=0\)(Vô Nghiệm)
Vậy phương trình có nghiệm nguyên\(\left(a,b\right)=\left(6,5\right),\left(2,-3\right)\)
P/s:Do bài trên toiii gửi nhầm nên đây là phần tiếp theo của bafi2,Sr:<
_Hoc Tốt_
Góp ý của anh là câu hình em chọn những câu mà có các ý nhỏ hơn để gợi ý cho các ý khác em nha =))
sol nhẹ vài bài
\(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)
\(\Leftrightarrow x\left(x+3\right)=\left(z-y\right)\left(z+y+3\right)\)
Khi đó \(z-y⋮x;z+y+3⋮x\)
Nếu \(z-y⋮x\Rightarrow z-y\ge x\Rightarrow z+y+3\ge x+2y+3>x+3\)
Trường hợp này loại
Khi đó \(z+y+3⋮x\) Đặt \(z+y+3=kx\Rightarrow x\left(x+3\right)=\left(z-y\right)kx\Rightarrow x+3=k\left(z-y\right)\)
Mặt khác \(\left(x+y\right)\left(x+y+3\right)=x\left(x+3\right)+y\left(y+3\right)+2xy>z\left(z+3\right)\)
\(\Rightarrow z< x+y\)
Giả sử rằng \(x\ge y\) Mà \(z\left(z+3\right)>x\left(x+3\right)\Rightarrow z>x>y\) mặt khác \(kx>z>x\Rightarrow k>1\)
Ta có:\(kx< \left(x+y\right)+y+3=x+2y+3\le3x+3< 4x\Rightarrow k< 4\Rightarrow k\in\left\{2;3\right\}\)
Xét \(k=2\Rightarrow z+y+3=2x\Rightarrow z=2x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)2x\Leftrightarrow x+3=2z-2y\)
\(\Leftrightarrow x+3=4x-2y-6-2y\Leftrightarrow4y=3x-3\Rightarrow y⋮3\Rightarrow y=3\) tự tìm x;z
\(k=3\Rightarrow z+y+3=3x\Rightarrow z=3x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)3x\Leftrightarrow x+3=3z-3y\Leftrightarrow x+3=3\left(3x-y-3\right)-3y\)
\(\Leftrightarrow x+3=9x-3y-9-3y\Leftrightarrow8x-12=6y\Leftrightarrow4x-4=3y\Rightarrow y=2\Rightarrow x=\frac{5}{2}\left(loai\right)\)
Vậy.............
Bài 1 : Giải :
a) Ta có : \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)
\(\Rightarrow x.\left(1-\sqrt[3]{2}\right)=\left(1-\sqrt[3]{2}\right)\left(1+\sqrt[3]{2}.1+\sqrt[3]{2^2}\right)\)
\(\Rightarrow x-x\sqrt[3]{2}=1^3-\left(\sqrt[3]{2}\right)^3=-1\)
\(\Rightarrow x+1=x\sqrt[3]{2}\)
\(\Rightarrow\left(x+1\right)^3=2x^3\)
\(\Rightarrow x^3-3x^2-3x-1=0\)
Khi đó ta có : \(A=x^5-4x^4+x^3-x^2-2x+2019\)
\(=x^5-3x^4-3x^3-x^2-x^4+3x^3+3x^2+x+x^3-3x^2-3x-1+2020\)
\(=x^2.\left(x^3-3x^2-3x-1\right)-x.\left(x^3-3x^2-3x-1\right)+\left(x^3-3x^2-3x-1\right)+2020\)
\(=2020\)
P/s : Tạm thời xí câu này đã tối về xí tiếp nha :))