K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

2.)\(x^3-10x+1=y^3+6y^2\)(1)

    Đặt\(x=y+b\)với \(b\inℤ\).Ta có:

                                                  (1)\(\Leftrightarrow\)\(y^3+3y^2b+3yb^2+b^3+10y+10b-1=y^2+6y^2\)

                                                      \(\Leftrightarrow\)\(y^2\left(3b-6\right)+y\left(3b^2+10\right)+b^3+10b-1=0\)(1)

                                                \(\Delta=\left(3b^2+10\right)^2-\left(12b-24\right)\left(b^3+10b-1\right)\ge0\)

                                                    \(=-3b^4+24b^3-60b^2+252b+76\)

                                                    \(=1399-3\left(b^2-4b\right)^2-3\left(2b-21\right)^2\ge0\)

Do đó:\(\left(b^2-4b^2\right)+\left(2b-21\right)^2\le466\)

Nhận thấy:\(\left(2b-21\right)^2\le466\)nên \(0\le b\le21\)

Theo phương trình ban đầu thì\(x,y\)khác tính chắn lẻ nên\(b\)lẻ:

          Nếu\(b=1\)thì(1)\(\Leftrightarrow\)\(-3y^2+12y+10\Leftrightarrow y=5\Rightarrow x=6\)

          Nếu\(b=3\)thì(1)\(\Leftrightarrow3y^2+37y+56=0,\)không có nghiệm nguyên

20 tháng 4 2020

\(\Leftrightarrow\)Nếu\(b=5\)thì(1)\(\Leftrightarrow9y^2+85y+174=0\Leftrightarrow y=-3\Rightarrow x==2\)

\(\Leftrightarrow\)Nếu\(b=7\)thì(1)\(\Leftrightarrow\)\(15y^2+157y+412=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=11\)thì(1)\(\Leftrightarrow27y^2+373y+1440=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=13\)thì(1)\(\Leftrightarrow33y^2+517y+2326=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=15\)thì(1)\(\Leftrightarrow39y^2+685+3524=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=17\)thì(1)\(\Leftrightarrow45y^2+877y+5082=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=19\)thì(1)\(\Leftrightarrow51y^2+1093y+7048=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=21\)thì(1)\(\Leftrightarrow57y^2+442y+9479=0\)(Vô Nghiệm)

Vậy phương trình có nghiệm nguyên\(\left(a,b\right)=\left(6,5\right),\left(2,-3\right)\)

P/s:Do bài trên toiii gửi nhầm nên đây là phần tiếp theo của bafi2,Sr:<

_Hoc Tốt_

15 tháng 6 2020

Xin lời giải với ạ :<<

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.Câu 1:a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)Câu 2:a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)b) Cho số tự nhiên \(n\ge2\).Biết rằng với...
Đọc tiếp

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.

Câu 1:

a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)

b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)

Câu 2:

a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)

b) Cho số tự nhiên \(n\ge2\).Biết rằng với mỗi số tự nhiên \(k\le\sqrt{\frac{n}{3}}\)thì \(k^2+k+n\)là một số nguyên tố. Chứng minh rằng với mỗi số tự nhiên \(k\le n-2\)thì \(k^2+k+n\)là một số nguyên tố.

Câu 3: 

a) Cho \(x\le y\le z\)thỏa mã điểu kiện\(xy+yz+zx=k\)với k là một số nguyên dương lớn hơn 1.

Hỏi bất đẳng thức sau đây đúng hay không: \(xy^2z^3< k+1?\)

b) Cho a,b,c là các số thực dương thỏa mãn \(abc\le1\). Chứng minh rằng:

\(\sqrt{\frac{a^2+b^2}{ab\left(a+b\right)}}+\sqrt{\frac{b^2+c^2}{bc\left(b+c\right)}}+\sqrt{\frac{c^2+a^2}{ca\left(c+a\right)}}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Câu 4: Cho đường tròn (O) có đường kính BC, A là điểm nằm ngoài đường tròn (O) sao cho tam giác ABC có 3 góc nhọn. AB cắt đường tròn (O) tại F, AC đường tròn (O) tại E. Gọi H là trực tâm tam giác ABC, N là trung điểm AH, AH cắt BC tại D, NB cắt đường tròn (O) tại điểm thứ hai là M. Gọi K, L lần lượt là giao điểm AH với ME và MC.

a) Chứng minh: E, L, F thẳng hàng 

b) Vẽ đường tròn (OQX) cắt OE tại Y với X,I,Q là giao điểm của đường thẳng qua H song song với ME và OF, NF,MC. Trên tia QY lấy điểm T sao cho QT=MK. Kẻ HT cắt NS tại J. Chứng minh tứ giác NJIH nội tiếp.

Câu 5: Cho m và n là hai số nguyên dương nguyên tố cùng nhau. Chứng minh tồn tại hai số nguyên dương x,y không vượt quá \(\sqrt{m}\) sao cho \(n^2x^2-y^2\)chia hết cho m.

Hết!

 

2
20 tháng 4 2019

Đây là đề của trường nào vậy bạn?

21 tháng 4 2019

Đề khó vcl ...

20 tháng 12 2017

A B C O F H E D I K A' C' B' M N

a) Do BHCK là hình bình hành nên BH // KC \(\Rightarrow KC\perp AC\Rightarrow\widehat{ACK}=90^o\)

KB // CF \(\Rightarrow\widehat{ABK}=90^o\)

Hai tam giác vuông ABK và ACK chung cạnh huyền AK nên A, B, C, K cùng thuộc đường tròn đường kính AK. Vậy K thuộc đường tròn (O).

b) Do BHCK là hình bình hành nên I là trung điểm HK.

AK là đường kính nên \(\widehat{AA'K}=90^o\Rightarrow\) DI // A'K

Vậy DI là đường trung bình tam giác HA'K. Suy ra HD = DA'

Tương tự : HF = FC' ; HE = EB'

Ta có :  \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=\frac{AD+DA'}{AD}+\frac{BE+EE'}{BE}+\frac{CF+FC'}{CF}\)

\(=1+\frac{DA'}{AD}+1+\frac{EB'}{BE}+1+\frac{FC'}{CF}=3+\left(\frac{DA'}{AD}+\frac{EB'}{BE}+\frac{FC'}{CF}\right)\)

\(=3+\left(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\right)=3+\left(\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}\right)\)

\(=3+\frac{S_{ABC}}{S_{ABC}}=3+1=4\)

Vậy nên \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=4\)

c) Ta thấy \(\widehat{AKC}=\widehat{ABC}=\widehat{AHF}\)

Vậy nên \(\Delta AFH\sim\Delta ACK\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{AF}{AC}\)  (1)

AFH và AEH là các tam giác vuông chung cạnh huyền AH nên AFHE là tứ giác nội tiếp.

Vậy thì \(\widehat{AFM}=\widehat{AHE}=\widehat{ACN}\)

Lại có \(\Delta AFH\sim\Delta ACK\Rightarrow\widehat{FAM}=\widehat{CAN}\)

Nên \(\Delta AFM\sim\Delta ACN\left(g-g\right)\Rightarrow\frac{AF}{AC}=\frac{AM}{AN}\)   (2)

Từ (1) và (2) suy ra \(\frac{AH}{AK}=\frac{AM}{AN}\Rightarrow\frac{AH}{AM}=\frac{AK}{AN}\Rightarrow\) MN // HK (Định lý Talet đảo)

20 tháng 12 2017

ghê quá cô ơi

25 tháng 3 2020

em ko biết

26 tháng 3 2020

A B C D E K H N M 2 1 2 1 1 1 F O

Xét \(\Delta ABK\)và \(\Delta C\text{D}K\)có:

\(\widehat{A_1}=\widehat{C_2}\)( 2 góc nội tiếp cùng chắn cung BD )

\(\widehat{AKB}=\widehat{CK\text{D}}\)( đối đỉnh )

\(\Rightarrow\Delta ABK~\Delta C\text{D}K\left(g-g\right)\)

\(\Rightarrow\frac{KA}{KB}=\frac{KC}{K\text{D}}\Rightarrow KA.K\text{D}=KB.KC\)

b) Kéo dài CH và BH cắt AB và AC lần lượt tại N và M

Xét \(\Delta HC\text{D}\) có:

CK vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow\Delta HC\text{D}\)cân tại C

\(\Rightarrow\)CK là đường phân giác của \(\widehat{HC\text{D}}\Rightarrow\widehat{C_1}=\widehat{C_2}\)

Xét \(\Delta AMH\) và \(\Delta CKH\)có:

\(\widehat{AHM}=\widehat{CHK}\)( đối đỉnh )

\(\widehat{A_1}=\widehat{C_1}\)( cùng bằng \(\widehat{C_2}\))

\(\Rightarrow\Delta AMH~\Delta CKH\left(g-g\right)\)

\(\Rightarrow\widehat{AMH}=\widehat{CKH}=90^0\)

Hay \(CM\perp AB\)

Xét \(\Delta ABC\)có:

2 đường cao cắt nhau tại H

\(\Rightarrow\)H là trực tâm của tam giác ABC

c) Ta có: DE // BC Mà \(A\text{D}\perp BC\Rightarrow DE\perp A\text{D}\Rightarrow\widehat{FDE}=90^0\)

Xét \(\Delta AFB\)Và \(\Delta\text{E}FD\)có:

\(\widehat{F_1}=\widehat{F_2}\)( đối đỉnh )

\(\widehat{A_1}=\widehat{FED}\)( góc nội tiếp cùng chắn cung BD )

\(\Rightarrow\Delta\text{A}FB~\Delta\text{E}FD\left(g-g\right)\)

\(\Rightarrow\widehat{ABF}=\widehat{E\text{D}F}=90^0\)

Xét tam giác ABE nội tiếp đường tròn ( O, R )

có: \(\widehat{ABE}=90^0\)\(\Rightarrow\)AE là đường kính của ( O, R )

\(\Rightarrow\)A , O , E thẳng hàng