K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(AM=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)

\(BM=\dfrac{AB^2}{BC}=7.2\left(cm\right)\)

c: Xét ΔAMC vuông tại M có \(AM^2+MC^2=AC^2\)

nên \(AM^2=AC^2-MC^2\left(1\right)\)

Xét ΔAMB vuông tại M có ME là đường cao

nên \(AE\cdot AB=AM^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AC^2-MC^2\)

5 tháng 9 2016

Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn

5 tháng 9 2016

Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy 

16 tháng 10 2017

\(A=\dfrac{2a^2+4}{1-a^3}-\dfrac{1}{1+\sqrt{a}}-\dfrac{1}{1-\sqrt{a}}\\ =\dfrac{2a^2+4}{\left(1-a\right)\left(1+a+a^2\right)}-\dfrac{1}{1+\sqrt{a}}-\dfrac{1}{1-\sqrt{a}}\\ =\dfrac{2a^2+4-\left(1-\sqrt{a}\right)\left(1+a+a^2\right)-\left(1+\sqrt{a}\right)\left(1+a+a^2\right)}{\left(1-a\right)\left(1+a+a^2\right)}\\ =\dfrac{2a^2+4-\left(1+a+a^2\right)\left(1-\sqrt{a}+1+\sqrt{a}\right)}{\left(1-a\right)\left(1+a+a^2\right)}\\ =\dfrac{2a^2+4-2\left(1+a+a^2\right)}{\left(1-a\right)\left(1+a+a^2\right)}=\dfrac{2}{1+a+a^2}\\ \)

Ta có A max <=> \(1+a+a^2min\)

Mà 1+a+a^2=\(\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\\ \)

Dấu bằng xảy ra <=> a=-1/2

=> \(A=\dfrac{2}{1+a+a^2}\le\dfrac{2}{\dfrac{3}{4}}=\dfrac{8}{3}\)

Vậy max A=8/3 <=> a=-1/2

=)) mỏi tay quá đê

16 tháng 10 2017

Hì thanks bạn nhiều nhé

19 tháng 11 2017

Hình bạn vẽ sai:

I đối xứng với A qua B đáng lẽ là = nhau

20 tháng 11 2017

Qua D nhá, đừng luyên thuyên

26 tháng 9 2017

Bài 2 :

a ) \(\sqrt{4x-8}+\sqrt{x-2}=4+\dfrac{1}{3}\sqrt{9x-18}\) ( ĐKXĐ : \(x\ge2\) )

\(\Leftrightarrow2\sqrt{x-2}+\sqrt{x-2}=4+\dfrac{1}{3}.3\sqrt{x-2}\)

\(\Leftrightarrow3\sqrt{x-2}-\sqrt{x-2}=4\)

\(\Leftrightarrow2\sqrt{x-2}=4\)

\(\Leftrightarrow\sqrt{x-2}=2\)

\(\Leftrightarrow x-2=4\)

\(\Leftrightarrow x=2\) ( thỏa mãn ĐKXĐ )
Vậy phương trình có nghiệm x = 2 .

26 tháng 9 2017

Bài 2 :

b ) \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=0\)

\(\Leftrightarrow|x-3|-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3-\sqrt{3}=0\left(x\ge3\right)\\3-x-\sqrt{3}=0\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{matrix}\right.\)

Vậy phương trình cón nghiệm \(x=3+\sqrt{3}\) hoặc \(x=3-\sqrt{3}\) .

2 tháng 10 2017

Hỏi đáp Toán

2 tháng 10 2017

Đường tròn