Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)P=\left(\dfrac{x^2+2}{x^3-1}+\dfrac{x+1}{x^2+x+1}+\dfrac{1}{1-x}\right).\left(\dfrac{x^2}{x+1}+1\right).\left(x\ne1;x\ne-1\right).\\ P=\dfrac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}.\dfrac{x^2+x+1}{x+1}.\\ P=\dfrac{x^2-x}{x-1}.\dfrac{1}{x+1}.\\ P=\dfrac{x\left(x-1\right)}{x-1}.\dfrac{1}{x+1}.\\ P=x.\dfrac{1}{x+1}.\\ P=\dfrac{x}{x+1}.\)
\(P=\dfrac{1}{4}.\Rightarrow\dfrac{x}{x+1}=\dfrac{1}{4}.\\ \Leftrightarrow4x-x-1=0.\\ \Leftrightarrow3x-1=0.\\ \Leftrightarrow x=\dfrac{1}{3}\left(TM\right).\)
Câu 4:
a: Xét tứ giác AHBK có
M là trung điểm của AB
M là trung điểm của HK
Do đó: AHBK là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBK là hình chữ nhật
\(2b,=\left(2x^3-4x^2-4x^2+8x-2x+4-9\right):\left(2x-4\right)\\ =\left[\left(2x-4\right)\left(x^2-2x-2\right)-9\right]:\left(2x-4\right)\\ =x^2-2x-2\left(\text{ dư -9}\right)\)
1) \(\left(2x+3\right)^2=4x^2+12x+9\)
\(\left(3x+2\right)^2=9x^2+12x+4\)
\(\left(2x+5\right)^2=4x^2+20x+25\)
\(\left(2x+\dfrac{1}{3}\right)^2=4x^2+\dfrac{4}{3}x+\dfrac{1}{9}\)
\(\left(3x+\dfrac{1}{3}\right)^2=9x^2+2x+\dfrac{1}{9}\)
2) \(\left(2x-3\right)^2=4x^2-12x+9\)
\(\left(3x-2\right)^2=9x^2-12x+4\)
\(\left(2x-5\right)^2=4x^2-20x+25\)
\(\left(2x-\dfrac{1}{3}\right)^2=4x^2-\dfrac{4}{3}x+\dfrac{1}{9}\)
\(\left(3x-\dfrac{1}{3}\right)^2=9x^2-2x+\dfrac{1}{9}\)
3) \(\left(2x-3\right)\left(2x+3\right)=4x^2-9\)
\(\left(3x-4\right)\left(3x+4\right)=9x^2-16\)
\(\left(2x-5\right)\left(2x+5\right)=4x^2-25\)
\(\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=x^2-\dfrac{1}{4}\)
\(\left(2x-\dfrac{1}{3}\right)\left(2x+\dfrac{1}{3}\right)=4x^2-\dfrac{1}{9}\)
1: \(\left(2x+3\right)^2=4x^2+12x+9\)
\(\left(3x+2\right)^2=9x^2+12x+4\)
\(\left(2x+5\right)^2=4x^2+20x+25\)
\(\left(2x+\dfrac{1}{3}\right)^2=4x^2+\dfrac{4}{3}x+\dfrac{1}{9}\)
\(\left(3x+\dfrac{1}{3}\right)^2=9x^2+2x+\dfrac{1}{9}\)
Bài 1:
b) \(B=A.\dfrac{-10}{x-4}=\dfrac{x-4}{x+5}.\dfrac{-10}{x-4}=\dfrac{-10}{x+5}\)
Để B nguyên <=> x+5 nguyên mà \(x\in Z\Rightarrow x+5\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(\Leftrightarrow x\in\left\{-6;-4;-3;-7;0;-10;-15;5\right\}\) kết hợp với điều kiện của x
\(\Rightarrow x\in\left\{-15;-10;-6;-7;-3;0;5\right\}\)
Bài 5:
Có \(\left|x-2018\right|+\left|2x-2019\right|+\left|3x-2020\right|\ge0\) \(\forall\)x
\(\Rightarrow x-2021\ge0\) \(\Leftrightarrow x\ge2021\)
\(\Rightarrow x-2018>0,2x-2019>0,3x-2020>0\)
PT \(\Leftrightarrow x-2018+2x-2019+3x-2020=x-2021\)
\(\Leftrightarrow5x=4036\) \(\Leftrightarrow x=\dfrac{4036}{5}< 2021\) (L)
Vậy pt vô nghiệm
\(\left(4x^2-4x+1\right)-\left(x-1\right)^2\)
\(=\left(2x-1\right)^2-\left(x-1\right)^2\)
\(=\left(2x-1-x+1\right)\left(2x-1+x-1\right)\)
\(=x\left(3x-2\right)\)
\(\text{∘}\) \(\text{Ans}\)
\(\downarrow\)
\(14x^2y^3-7xy^2\cdot\left(2x-3y\right)\)
`=`\(14x^2y^3-\left[7xy^2\cdot2x+7xy^2\cdot\left(-3y\right)\right]\)
`=`\(14x^2y^3-\left(14x^2y^2-21xy^3\right)\)
`=`\(14x^2y^3-14x^2y^2+21xy^3\)
\(\text{∘}\) \(\text{Kaizuu lv uuu.}\)
Bài làm
a) a2 + b2 + c2 = ab + ac + bc
2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc
a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2ac - 2bc = 0
(a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
(a - b)2 + (a - c)2 + (b - c)2 = 0
Vì (a - b)2 > 0 V a và b
(a - c)2 > 0 V a và c
(b - c)2 > 0 V a và b
Mà (a - b)2 + (a - c)2 + (b - c)2 = 0
Do đó: a - b = 0
a - c = 0
b - c = 0
<=> a = b = c = 0 (đpcm)
a) a2 + b2 + c2 = ab + ac + bc
<=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc
<=> 2a2 + 2b2 + 2c2 - (2ab + 2ac + 2bc) = 0
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)
b) (a + b + c)2 = 3a2 + 3b2 + 3c2
<=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 3a2 + 3b2 + 3c2
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
Sau đó chứng minh tương tự câu a)
c) (a + b + c)2 = 3ab + 3ac + 3bc
<=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 3ab + 3ac + 3bc
<=> a2 + b2 + c2 = ab + bc + ca
Sau đó chứng minh tương tự câu a)