K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Ta có : \(a+b+c=0\Rightarrow-a-b=c\)

\(\Rightarrow a^3+b^3+c^3-3abc=a^3+b^3+\left(-a-b\right)^3-3abc\)

\(=a^3+b^3-a^3-3a^2b-3ab^2-b^3-3abc\)

\(\Rightarrow-3a^2b-3ab^2-3abc=3ab\left(-a-b\right)-3abc\)

\(=3abc-3abc=0\) (đpccm)

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)

Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

...

2 tháng 12 2018

Cảm ơn bạn nha

17 tháng 10 2018

ta có: a3 + b3 + c3 - 3abc 

= a3 + 3a2b + 3ab2 + b3 + c3 - 3abc - 3a2b - 3ab2

= (a+b)3 + c3 - 3ab.(c+a+b)

= (a+b+c).[(a+b)2 - (a+b).c + c2 ] - 3ab.(a+b+c)

= (a+b+c).[ a2 + 2ab + b2 - ac - bc + c2 ] - 3ab.(a+b+c)

= (a+b+c).[a2 - 2ab + b2 -ac-bc + c2 - 3ab]

= (a+b+c).(a2 + b2 + c2 - ab -ac-bc)

mà a + b + c = 0

=> a3 + b3 + c3 - 3abc = 0

=> đpcm

17 tháng 10 2018

Có:

a+b+c=0 => c=-(a+b) (1) 
Thay (1) vao a3+b3+c3ta có: 
a3+b3+[-(a+b)]3=3ab[-(a+b)] 
<=>a3+b3-(a+b)=-3ab(a+b) 
<=> a3+ b3- a3 -3a2b- 3ab2- b3= -3a2b- 3ab2 
<=> 0= 0 
vậy ta có đpcm.

6 tháng 8 2017

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)^3-3c\left(a+b\right)\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3ac-3bc-3ab\right]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ac+2bc+2ab-3ac-3bc-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

21 tháng 10 2021

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=-c\left(a^2-ab+b^2\right)\)

\(=-ca^2-b^2c+abc\)

Ta có đpcm

15 tháng 12 2016

1) Có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3-3abc=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

2)Có: \(a+b-c=0\)

\(\Leftrightarrow a+b=c\)

\(\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)

\(\Leftrightarrow a^3+b^3+3abc=c^3\)

\(\Leftrightarrow a^3+b^3-c^3=-3abc\)

 

29 tháng 3 2018

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0

\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)

\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)

29 tháng 3 2018

bạn thử tra mạng đi

21 tháng 7 2016

ta có 

\(\left(a+b+c\right)^3=0\)(vì a++c=0)

\(< =>a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)(1)

vì a+b+c= 0 > a+b = -c; a+c = -b ; b+c = -a thay vào (1) ta được

\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(< =>a^3+b^3+c^3+3\left(-c\right)\left(-a\right)\left(-b\right)=0\)

\(< =>a^3+b^3+c^3-3abc=0\)

\(< =>a^3+b^3+c^3=3abc\)

8 tháng 12 2019

a) \(a+b+c=0\\ \Rightarrow a+b=-c\\ a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\\ \Rightarrow a^3+b^3=\left(-c\right)^3-3ab.\left(-c\right)\\ a^3+b^3+c^3=-3ab.\left(-c\right)\\ a^3+b^3+c^3=3ab\left(dpcm\right)\)

Này mình làm tắt nha bạn thông cảm