Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3 + b3 + c3 = 3abc
⇒ a3 + b3 + c3 - 3abc = 0
⇒ ( a3 + b3 ) + c3 - 3abc = 0
⇒ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
⇒ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
⇒ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0
⇒ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0
Vì a + b + c ≠ 0
⇒ a2 + b2 + c2 - ab - bc - ac = 0
⇒ 2( a2 + b2 + c2 - ab - bc - ac ) = 0
⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
⇒ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0
⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0
Vì \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(a-c\right)^2\end{cases}}\ge0\forall a,b,c\)⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 ≥ 0 ∀ a,b,c
Dấu "=" xảy ra khi a = b = c
Khi đó \(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
Từ \(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)^3-3\left(a+b\right).c\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3bc-3ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Vì \(a+b+c\ne0\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0\), \(\left(b-c\right)^2\ge0\), \(\left(c-a\right)^2\ge0\)\(\forall a,b,c\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)\(\forall a,b,c\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)
Thay \(a=b=c\)vào N ta có: \(N=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
Vậy \(N=\frac{1}{3}\)
Bài 1:
a)\(3x^2+5x+2\)
\(=3\left(x+\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)
Dấu = khi \(x=-\frac{5}{6}\)
b)\(4x^2+y^2-2xy+7x-4y+10\)
tương tự có Min=\(\frac{21}{4}\Leftrightarrow x=-\frac{1}{2};y=\frac{3}{2}\)
Câu 2: ở đây Câu hỏi của Phạm Thùy Linh - Toán lớp 8 | Học trực tuyến
Ta có : \(a+b+c=0\Rightarrow-a-b=c\)
\(\Rightarrow a^3+b^3+c^3-3abc=a^3+b^3+\left(-a-b\right)^3-3abc\)
\(=a^3+b^3-a^3-3a^2b-3ab^2-b^3-3abc\)
\(\Rightarrow-3a^2b-3ab^2-3abc=3ab\left(-a-b\right)-3abc\)
\(=3abc-3abc=0\) (đpccm)
a) 4x2-8x=0
(2x)2-2.2.2x+4-4=0
(2x-2)2 =4
2x-2=2
2x =4
x=2
Nhớ k cho mk nha
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=-c\left(a^2-ab+b^2\right)\)
\(=-ca^2-b^2c+abc\)
Ta có đpcm