K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 6 2020

\(S^2=\left(xy+yz+zx\right)^2=\left[x\left(y+\frac{z}{2}\right)+\left(y+\frac{x}{2}\right)z\right]^2\)

\(S^2=\left[x\left(y+\frac{z}{2}\right)+\left(\frac{2}{\sqrt{3}}y+\frac{1}{\sqrt{3}}x\right).\left(\frac{\sqrt{3}}{2}z\right)\right]^2\)

\(S^2\le\left[x^2+\left(\frac{2}{\sqrt{3}}y+\frac{1}{\sqrt{3}}x\right)^2\right]\left[\left(y+\frac{z}{2}\right)^2+\frac{3}{4}z^2\right]\)

\(S^2\le\left(x^2+\frac{4}{3}y^2+\frac{4}{3}xy+\frac{1}{3}x^2\right)\left(y^2+yz+\frac{z^2}{4}+\frac{3}{4}z^2\right)\)

\(S^2\le\frac{4}{3}\left(x^2+xy+y^2\right)\left(y^2+yz+z^2\right)=64\)

\(\Rightarrow S\le8\Rightarrow S_{max}=8\)

17 tháng 6 2020

cám mơn nha !!!

1 tháng 4 2019

\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)

Nên phần còn lại vô nghiệm

26 tháng 2 2020

Trừ theo vế hai pt đầu của hệ:

(x-y)(x+y-z)=0\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x+y=z\end{matrix}\right.\)

Xét x=y. Khi đó ta có hệ mới:\(\left\{{}\begin{matrix}y^2+yz=4\\z^2+y^2=10\end{matrix}\right.\)

=>5y2+5yz=2z2+2y2<=>3y2+5yz-2z2=0<=>\(\left[{}\begin{matrix}y=\frac{1}{3}z\\y=-2z\end{matrix}\right.\)

y=-2z=>(-2z)2-2z.z=4<=>2z2=4<=>\(\left[{}\begin{matrix}z=\sqrt{2}\rightarrow x=y=-2\sqrt{2}\\z=-\sqrt{2}\rightarrow x=y=2\sqrt{2}\end{matrix}\right.\)

\(y=\frac{1}{3}z\Rightarrow\left(\frac{1}{3}z\right)^2+\frac{1}{3}z.z=4\Leftrightarrow z^2=9\Leftrightarrow\left[{}\begin{matrix}z=3\rightarrow x=y=1\\z=-3\rightarrow x=y=-1\end{matrix}\right.\)

Xét x+y=z. Cộng theo vế hai pt đầu:

x2+y2+(x+y)2=8

=>4[(x+y)2+xy]=5[(x+y)2+x2+y2]<=>3x2-xy+3y2=0(pt vô nghiệm)

21 tháng 1 2017

Áp dụng BĐT Cô - si cho 3 bộ số không âm

\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(yz+1\right)\left(xz+1\right)\left(xy+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

Xét \(3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

\(=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{xz+1}{z}\right)}\)

\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Áp dụng BĐT Cô - si

\(\Rightarrow\left\{\begin{matrix}y+\frac{1}{x}\ge2\sqrt{\frac{y}{x}}\\z+\frac{1}{y}\ge2\sqrt{\frac{z}{y}}\\x+\frac{1}{z}\ge2\sqrt{\frac{x}{z}}\end{matrix}\right.\)

\(\Rightarrow\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)\ge8\)

\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge3\sqrt[3]{8}\)

\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge6\)

\(\Leftrightarrow3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\ge6\)

\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge6\)

Vậy GTNN của \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}=6\)

2 tháng 1 2018

Cộng hai vế phương trình lại ta có :

\(x+y-2z+z\left(x+y\right)=2\)

\(\Leftrightarrow\left(x+y\right)\left(z+1\right)-2\left(z+1\right)=0\Leftrightarrow\left(x+y-2\right)\left(z+1\right)=0\)

\(\Rightarrow x+y=2\) ( vì z dương nên không thể bằng -1 )

Ta có :

\(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}=2\)

Vậy Min T = 2 khi x = y = 1

mình thấy kết quả này hình như ko đúng cho lắm

1)Giải hệ phương trình với \(x,y,z\in R\)\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tốa)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn...
Đọc tiếp

1)Giải hệ phương trình với \(x,y,z\in R\)

\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   

2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tố

a)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)

b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)

3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn :

\(f\left(x^2\right)=f\left(x+y\right).f\left(x-y\right)+y^2,\forall x,y\in R\)

4)Cho đường tròn \(\left(I,r\right)\) nội tiếp \(\Delta ABC\).\(M\in\) đoạn \(BC\)\(\left(M\ne B,C\right)\).Gọi \(\left(I_1,r_1\right)\)là đường tròn nội tiếp \(\Delta AMC\).Đường thẳng song song \(BC\) tiếp xúc \(\left(I_1,r_1\right)\) cắt các cạnh \(AB,AC\) tại \(X,Y\).\(AM\) cắt \(XY\) tại \(N\).Gọi \(\left(I_2,r_2\right)\) là đường tròn nội tiếp \(\Delta AXN\).Chứng minh:

a)\(A,I,I_1,I_2\) cùng thuộc 1 đường tròn

b)\(r=r_1+r_2\)

0
19 tháng 10 2018

x + y + z = 6 => (x + y + z)2 = 36

=> x2 + y2 + z2 + 2(xy + yz + zx) = 36

=> x2 + y2 + z2 = 36 - 2.12 = 12

=> x2 + y2 + z2 = xy + yz + zx

Ta có VT \(\ge\) VP. Dấu "=" xảy ra <=> x = y = z

Thay vào hệ ta có (x; y; z) = (2; 2; 2)