\(\left\{{}\begin{matrix}x^2+y^2+xy=37\\y^2+z^2+yz=19\\z^2+x^2+xz=28\end{mat...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Trừ theo vế hai pt đầu của hệ:

(x-y)(x+y-z)=0\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x+y=z\end{matrix}\right.\)

Xét x=y. Khi đó ta có hệ mới:\(\left\{{}\begin{matrix}y^2+yz=4\\z^2+y^2=10\end{matrix}\right.\)

=>5y2+5yz=2z2+2y2<=>3y2+5yz-2z2=0<=>\(\left[{}\begin{matrix}y=\frac{1}{3}z\\y=-2z\end{matrix}\right.\)

y=-2z=>(-2z)2-2z.z=4<=>2z2=4<=>\(\left[{}\begin{matrix}z=\sqrt{2}\rightarrow x=y=-2\sqrt{2}\\z=-\sqrt{2}\rightarrow x=y=2\sqrt{2}\end{matrix}\right.\)

\(y=\frac{1}{3}z\Rightarrow\left(\frac{1}{3}z\right)^2+\frac{1}{3}z.z=4\Leftrightarrow z^2=9\Leftrightarrow\left[{}\begin{matrix}z=3\rightarrow x=y=1\\z=-3\rightarrow x=y=-1\end{matrix}\right.\)

Xét x+y=z. Cộng theo vế hai pt đầu:

x2+y2+(x+y)2=8

=>4[(x+y)2+xy]=5[(x+y)2+x2+y2]<=>3x2-xy+3y2=0(pt vô nghiệm)

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3
19 tháng 10 2018

x + y + z = 6 => (x + y + z)2 = 36

=> x2 + y2 + z2 + 2(xy + yz + zx) = 36

=> x2 + y2 + z2 = 36 - 2.12 = 12

=> x2 + y2 + z2 = xy + yz + zx

Ta có VT \(\ge\) VP. Dấu "=" xảy ra <=> x = y = z

Thay vào hệ ta có (x; y; z) = (2; 2; 2)

14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V

2 tháng 12 2020

1.

\(\left\{{}\begin{matrix}x^3+y^3+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\left(a^2\ge4b\right)\)

Hệ phương trình trở thành \(\left\{{}\begin{matrix}a^3-3ab+b^3=17\\a+b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3-3ab\left(a+b+1\right)=17\\a+b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ab=6\\a+b=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2;b=3\left(l\right)\\a=3;b=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)

2 tháng 12 2020

2.

\(\left\{{}\begin{matrix}x^3+y^3=2\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)=2\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-6=2\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3=8\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\)

\(\Leftrightarrow x=y=1\)

1 tháng 4 2019

\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)

Nên phần còn lại vô nghiệm

NV
17 tháng 6 2020

\(S^2=\left(xy+yz+zx\right)^2=\left[x\left(y+\frac{z}{2}\right)+\left(y+\frac{x}{2}\right)z\right]^2\)

\(S^2=\left[x\left(y+\frac{z}{2}\right)+\left(\frac{2}{\sqrt{3}}y+\frac{1}{\sqrt{3}}x\right).\left(\frac{\sqrt{3}}{2}z\right)\right]^2\)

\(S^2\le\left[x^2+\left(\frac{2}{\sqrt{3}}y+\frac{1}{\sqrt{3}}x\right)^2\right]\left[\left(y+\frac{z}{2}\right)^2+\frac{3}{4}z^2\right]\)

\(S^2\le\left(x^2+\frac{4}{3}y^2+\frac{4}{3}xy+\frac{1}{3}x^2\right)\left(y^2+yz+\frac{z^2}{4}+\frac{3}{4}z^2\right)\)

\(S^2\le\frac{4}{3}\left(x^2+xy+y^2\right)\left(y^2+yz+z^2\right)=64\)

\(\Rightarrow S\le8\Rightarrow S_{max}=8\)

17 tháng 6 2020

cám mơn nha !!!

27 tháng 2 2020

bài này biến đổi một tí

cộng cả 3 pt ta được

\(x^2+y^2+z^2+x+y+z=6\\ \Leftrightarrow x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}+y^2+2\cdot\frac{1}{2}\cdot y+\frac{1}{4}+z^2+2\cdot\frac{1}{2}\cdot z+\frac{1}{4}=\frac{21}{4}\)

suy ra

\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\left(z+\frac{1}{2}\right)^2=\frac{1}{4}+\frac{9}{4}+\frac{16}{4}\)

vì x , y , z có vai trò như nhau nên

(x;y;z)= ( 0 ; 1 ; 3/2 ) và các hoán vị

28 tháng 2 2020

ủa ủa, thử lại đâu đúng!!

1 tháng 1 2020

hpt\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+xz\right)=25\\xy+yz+xz=8\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+z^2=9=0^2+0^2+3^2\)\(=1^2+2^2+2^2\)và các hoán vị .

Từ đó giải ra (x;y;z)=(1;2;2) và các hoán vị.

#Walker