Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trừ theo vế hai pt đầu của hệ:
(x-y)(x+y-z)=0\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x+y=z\end{matrix}\right.\)
Xét x=y. Khi đó ta có hệ mới:\(\left\{{}\begin{matrix}y^2+yz=4\\z^2+y^2=10\end{matrix}\right.\)
=>5y2+5yz=2z2+2y2<=>3y2+5yz-2z2=0<=>\(\left[{}\begin{matrix}y=\frac{1}{3}z\\y=-2z\end{matrix}\right.\)
y=-2z=>(-2z)2-2z.z=4<=>2z2=4<=>\(\left[{}\begin{matrix}z=\sqrt{2}\rightarrow x=y=-2\sqrt{2}\\z=-\sqrt{2}\rightarrow x=y=2\sqrt{2}\end{matrix}\right.\)
\(y=\frac{1}{3}z\Rightarrow\left(\frac{1}{3}z\right)^2+\frac{1}{3}z.z=4\Leftrightarrow z^2=9\Leftrightarrow\left[{}\begin{matrix}z=3\rightarrow x=y=1\\z=-3\rightarrow x=y=-1\end{matrix}\right.\)
Xét x+y=z. Cộng theo vế hai pt đầu:
x2+y2+(x+y)2=8
=>4[(x+y)2+xy]=5[(x+y)2+x2+y2]<=>3x2-xy+3y2=0(pt vô nghiệm)
1.
\(\left\{{}\begin{matrix}x^3+y^3+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\left(a^2\ge4b\right)\)
Hệ phương trình trở thành \(\left\{{}\begin{matrix}a^3-3ab+b^3=17\\a+b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3-3ab\left(a+b+1\right)=17\\a+b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ab=6\\a+b=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2;b=3\left(l\right)\\a=3;b=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)
2.
\(\left\{{}\begin{matrix}x^3+y^3=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-6=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3=8\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\)
\(\Leftrightarrow x=y=1\)
\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)
Nên phần còn lại vô nghiệm
\(S^2=\left(xy+yz+zx\right)^2=\left[x\left(y+\frac{z}{2}\right)+\left(y+\frac{x}{2}\right)z\right]^2\)
\(S^2=\left[x\left(y+\frac{z}{2}\right)+\left(\frac{2}{\sqrt{3}}y+\frac{1}{\sqrt{3}}x\right).\left(\frac{\sqrt{3}}{2}z\right)\right]^2\)
\(S^2\le\left[x^2+\left(\frac{2}{\sqrt{3}}y+\frac{1}{\sqrt{3}}x\right)^2\right]\left[\left(y+\frac{z}{2}\right)^2+\frac{3}{4}z^2\right]\)
\(S^2\le\left(x^2+\frac{4}{3}y^2+\frac{4}{3}xy+\frac{1}{3}x^2\right)\left(y^2+yz+\frac{z^2}{4}+\frac{3}{4}z^2\right)\)
\(S^2\le\frac{4}{3}\left(x^2+xy+y^2\right)\left(y^2+yz+z^2\right)=64\)
\(\Rightarrow S\le8\Rightarrow S_{max}=8\)
bài này biến đổi một tí
cộng cả 3 pt ta được
\(x^2+y^2+z^2+x+y+z=6\\ \Leftrightarrow x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}+y^2+2\cdot\frac{1}{2}\cdot y+\frac{1}{4}+z^2+2\cdot\frac{1}{2}\cdot z+\frac{1}{4}=\frac{21}{4}\)
suy ra
\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\left(z+\frac{1}{2}\right)^2=\frac{1}{4}+\frac{9}{4}+\frac{16}{4}\)
vì x , y , z có vai trò như nhau nên
(x;y;z)= ( 0 ; 1 ; 3/2 ) và các hoán vị