K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

Bài nào e?

14 tháng 10 2021

B2 á a:)

11 tháng 3 2022

Bài 2 

a, bạn tự vẽ 

b, Hoành độ giao điểm tm pt 

\(2x^2-2x+3=0\)

\(\Delta'=1-3.2=-5< 0\)

Vậy pt vô nghiệm hay (d) ko cắt (P)

10 tháng 10

Độ dài ACACAC được tính từ góc A=6∘A = 6^\circA=6∘ và cạnh đối AH=305 mAH = 305 \, mAH=305m.

AC=AHsin⁡A=305sin⁡6∘AC = \frac{AH}{\sin A} = \frac{305}{\sin 6^\circ}AC=sinAAH​=sin6∘305​

Độ dài CBCBCB được tính từ góc B=4∘B = 4^\circB=4∘ và cạnh đối HB=458 mHB = 458 \, mHB=458m.

CB=HBsin⁡B=458sin⁡4∘CB = \frac{HB}{\sin B} = \frac{458}{\sin 4^\circ}CB=sinBHB​=sin4∘458​

Thời gian leo dốc từ AAA đến CCC:

tAC=AC4 km/ht_{AC} = \frac{AC}{4 \, km/h}tAC​=4km/hAC​

Thời gian xuống dốc từ CCC đến BBB:

tCB=CB19 km/ht_{CB} = \frac{CB}{19 \, km/h}tCB​=19km/hCB​
 Tổng thời gian di chuyển: ttotal=tAC+tCBt_{\text{total}} = t_{AC} + t_{CB}ttotal​=tAC​+tCB​Thời gian bạn Học đến trường bằng cách cộng tổng thời gian này vào thời gian khởi hành 6 giờ 45 phút.
6 tháng 7 2023

\(VT=\sqrt{\dfrac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}.\left(3\sqrt{2}+\sqrt{14}\right)\)

\(=\sqrt{\dfrac{\sqrt{5}}{8\sqrt{5}+3\sqrt{5}.\sqrt{7}}}.\left(3\sqrt{2}+\sqrt{2}.\sqrt{7}\right)\)

\(=\sqrt{\dfrac{\sqrt{5}}{\sqrt{5}\left(8+3\sqrt{7}\right)}}.\left[\sqrt{2}\left(3+\sqrt{7}\right)\right]\)

\(=\sqrt{\dfrac{1}{8+3\sqrt{7}}}.\left[\sqrt{2}\left(3+\sqrt{7}\right)\right]\)

\(=\dfrac{\sqrt{2}\left(3+\sqrt{7}\right)}{\sqrt{8+3\sqrt{7}}}\)

\(=\dfrac{\sqrt{2}.\sqrt{2}\left(3+\sqrt{7}\right)}{\sqrt{2}.\sqrt{8+3\sqrt{7}}}\) (Nhân \(\sqrt{2}\) cả tử và mẫu)

\(=\dfrac{2\left(3+\sqrt{7}\right)}{\sqrt{16+6\sqrt{7}}}\)

\(=\dfrac{2\left(3+\sqrt{7}\right)}{\sqrt{\left(3+\sqrt{7}\right)^2}}\)

\(=\dfrac{2\left(3+\sqrt{7}\right)}{\left|3+\sqrt{7}\right|}\)

\(=\dfrac{2\left(3+\sqrt{7}\right)}{3+\sqrt{7}}\)

\(=2=VP\left(dpcm\right)\)

6 tháng 7 2023

e cảm mơn ạ

 

AH
Akai Haruma
Giáo viên
5 tháng 1

Lời giải:

ĐKXĐ: $x\geq 0; x\neq 9$

\(C=\frac{\sqrt{x}(\sqrt{x}+3)-(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{x+3}\\ =\frac{x+2\sqrt{x}+3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{x+3}=\frac{x+2\sqrt{x}+3}{(\sqrt{x}+3)(x+3)}\)

1: Khi x=3-2 căn 2 thì \(A=\dfrac{\sqrt{2}-1+2}{\sqrt{2}-1}=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)

2: \(B=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}=\dfrac{x+2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

3: \(P=A:B=\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{x-4}{x}\)

\(x\cdot P< =10\sqrt{x}-29-\sqrt{x-25}\)

=>\(x-4< =10\sqrt{x}-29-\sqrt{x-25}\)

\(\Leftrightarrow x-4-10\sqrt{x}+29< =-\sqrt{x-25}\)

=>\(x-10\sqrt{x}+25< =-\sqrt{x-25}\)

=>(căn x-5)^2<=-căn x-25

=>x-25=0

=>x=25

 

27 tháng 2 2023

e cảm ơn ạ

 

29 tháng 10 2021

2: Để (d)//y=(m2+1)x-4 thì \(\left\{{}\begin{matrix}m^2=1\\m-5\ne-4\end{matrix}\right.\Leftrightarrow m=1\)

a: ĐKXĐ: a>0; a<>1

\(A=\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\dfrac{a}{\sqrt{a}+1}=\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a}{\sqrt{a}+1}\)

\(=\sqrt{a}\left(\sqrt{a}-1\right)=a-\sqrt{a}\)

b: A=a-căn a+1/4-1/4

=(căn a-1/2)^2-1/4>=-1/4

Dấu = xảy ra khi a=1/4

20 tháng 4 2023

Câu I:

1. \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{x-1}\left(x\ge0;x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}-\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{x-1}+\dfrac{x-3}{x-1}\)

\(=\dfrac{x+\sqrt{x}-2x+2\sqrt{x}+x-3}{x-1}\)

\(=\dfrac{3\sqrt{x}-3}{x-1}=\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{3}{\sqrt{x}+1}\)

2. \(\dfrac{1}{P}=\dfrac{4}{3}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{3}{\sqrt{x}+1}}=\dfrac{4}{3}\)

\(\Leftrightarrow\dfrac{12}{\sqrt{x}+1}=3\)

\(\Leftrightarrow3\sqrt{x}+3=12\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow x=9\left(Vì.x\ge0;x\ne1\right)\)

20 tháng 4 2023

Câu II:

1. Vì đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 2, nên đường thẳng (d) cắt trục hoành tại điểm có tọa độ (2;0)

Thay x = 2; y = 0 vào phương trình đường thẳng (d), ta được:

\(0=\left(2-m\right).2+m+1\)

\(\Leftrightarrow4-2m+m+1=0\)

\(\Leftrightarrow-m=-5\)

\(\Leftrightarrow m=5\)

Vậy nếu m = 5 thì đưởng thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 2.

2. \(\left\{{}\begin{matrix}3x+2y=11\\x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=12\\x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\3-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là (x; y) = (3; 1)

25 tháng 9 2021

1) \(\sqrt{2x-5}=7\)

\(\left(\sqrt{2x-5}\right)^2=7^2\)

\(2x-5=49\)

\(2x=54\)

\(x=27\)

2) \(3+\sqrt{x-2}=4\)

\(\sqrt{x-2}=1\)

\(\left(\sqrt{x-2}\right)^2=1^2\)

\(x-2=1\)

\(x=3\)

25 tháng 9 2021

1) \(\sqrt{2x-5}=7\left(đk:x\ge\dfrac{5}{2}\right)\)

\(\Leftrightarrow2x-5=49\Leftrightarrow2x=54\Leftrightarrow x=27\left(tm\right)\)

2) \(3+\sqrt{x-2}=4\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)

3) \(\Leftrightarrow\sqrt{\left(x-1\right)^2}=1\Leftrightarrow\left|x-1\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

4) \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\Leftrightarrow\left|x-2\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

5) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+4\right)^2}\)

\(\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\2x-1=-x-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

6) \(ĐK:x\ge-2\)

 \(\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\)

\(\Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\)

\(\Leftrightarrow x+2=x+7\Leftrightarrow2=7\left(VLý\right)\)

Vậy \(S=\varnothing\)

7) \(ĐK:x\ge-1\)

\(\Leftrightarrow5\sqrt{2x+1}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{2x+1}\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow2x+1=x+1\Leftrightarrow x=0\left(tm\right)\)